TABLE OF CONTENTS

Karen L. Adams, Nancy Faires Conklin: Toward a Theory of Natural Classification
Judith Alissen: Shifty Objects in Spanish
Avery D. Andrews: Agreement and Deletion
Arlene Berman: A Constraint on Tough-Movement
Ann Borkin: To Be and Not To Be
William R. Cantrall: Why I Would Relate Own, Emphatic Reflexives, and Intensive Pronouns, My Own Self
Catherine V. Chvany: On the Role of Presuppositions in Russian Existential Sentences
Linda Coleman: Why the Only Interesting Syntactic Dialects Are the Uninteresting Ones
Nancy Faires Conklin (see K. L. Adams)
Claudia Corum: Anaphoric Peninsulas
Susan Curtiss, Stephen Krashen, Victoria Fromkin, David Rigler, Marilyn Rigler: Language Acquisition after the Critical Period; Genie as of April, 1973
Bill J. Darden: On Confirmative Tag Sentences in English
Alice Davison: Words for Things People Do with Words
Victoria Fromkin (see S. Curtiss)
G. M. Green: Some Remarks on Split Controller Phenomena
Timothy Guile: Glide-Obstruentization and the Syllable Coda Hierarchy
Auli Hakulinen, Lauri Karttunen: Missing Persons; On Generic Sentences in Finnish
Eric P. Hamp: North European '1000'
Jorge Hankamer: Why There Are Two Than's in English
Roland R. Haussler: Presuppositions and Quantifiers
Laurence R. Horn: Greek Grice: A Brief Survey of Proto-Conversational Rules in the History of Logic
James W. Hutcherson: Remarks on the Nature of Complete Consonantal Assimilations
Gregory Iverson, Catherine Ringen: Rule Reordering and the History of High German Vowel Length
Roderick A. Jacobs: Syntactic Compression and Semantic Change
Deborah James: Another Look at, say, Some Grammatical Constraints, on, oh, Interjections and Hesitations
David E. Johnson: Linking Antecedents and Semantic Representation
Lauri Karttunen (see A. Hakulinen)
John P. Kimball: The Grammar of Existence
Stephen Krashen (see S. Curtiss)
George Lakoff: Fuzzy Grammar and the Performance/Competence Terminology Game
Robin Lakoff: The Logic of Politeness; or, Minding Your P's and Q's
Don Larkin, Michael H. O'Malley: Declarative Sentences and the Rule-of-Conversation Hypothesis
John M. Lawler: Tracking the Generic Toad

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen L. Adams, Nancy Faires Conklin: Toward a Theory of Natural Classification</td>
<td>1</td>
</tr>
<tr>
<td>Judith Alissen: Shifty Objects in Spanish</td>
<td>11</td>
</tr>
<tr>
<td>Avery D. Andrews: Agreement and Deletion</td>
<td>23</td>
</tr>
<tr>
<td>Arlene Berman: A Constraint on Tough-Movement</td>
<td>34</td>
</tr>
<tr>
<td>Ann Borkin: To Be and Not To Be</td>
<td>44</td>
</tr>
<tr>
<td>William R. Cantrall: Why I Would Relate Own, Emphatic Reflexives, and Intensive Pronouns, My Own Self</td>
<td>57</td>
</tr>
<tr>
<td>Catherine V. Chvany: On the Role of Presuppositions in Russian Existential Sentences</td>
<td>68</td>
</tr>
<tr>
<td>Linda Coleman: Why the Only Interesting Syntactic Dialects Are the Uninteresting Ones</td>
<td>78</td>
</tr>
<tr>
<td>Nancy Faires Conklin (see K. L. Adams)</td>
<td>89</td>
</tr>
<tr>
<td>Claudia Corum: Anaphoric Peninsulas</td>
<td>98</td>
</tr>
<tr>
<td>Susan Curtiss, Stephen Krashen, Victoria Fromkin, David Rigler, Marilyn Rigler: Language Acquisition after the Critical Period; Genie as of April, 1973</td>
<td>104</td>
</tr>
<tr>
<td>Bill J. Darden: On Confirmative Tag Sentences in English</td>
<td>114</td>
</tr>
<tr>
<td>Alice Davison: Words for Things People Do with Words</td>
<td>123</td>
</tr>
<tr>
<td>Victoria Fromkin (see S. Curtiss)</td>
<td>139</td>
</tr>
<tr>
<td>G. M. Green: Some Remarks on Split Controller Phenomena</td>
<td></td>
</tr>
<tr>
<td>Timothy Guile: Glide-Obstruentization and the Syllable Coda Hierarchy</td>
<td></td>
</tr>
<tr>
<td>Auli Hakulinen, Lauri Karttunen: Missing Persons; On Generic Sentences in Finnish</td>
<td>157</td>
</tr>
<tr>
<td>Eric P. Hamp: North European '1000'</td>
<td>172</td>
</tr>
<tr>
<td>Jorge Hankamer: Why There Are Two Than's in English</td>
<td>179</td>
</tr>
<tr>
<td>Roland R. Haussler: Presuppositions and Quantifiers</td>
<td>192</td>
</tr>
<tr>
<td>Laurence R. Horn: Greek Grice: A Brief Survey of Proto-Conversational Rules in the History of Logic</td>
<td>205</td>
</tr>
<tr>
<td>James W. Hutcherson: Remarks on the Nature of Complete Consonantal Assimilations</td>
<td>215</td>
</tr>
<tr>
<td>Gregory Iverson, Catherine Ringen: Rule Reordering and the History of High German Vowel Length</td>
<td>223</td>
</tr>
<tr>
<td>Roderick A. Jacobs: Syntactic Compression and Semantic Change</td>
<td>232</td>
</tr>
<tr>
<td>Deborah James: Another Look at, say, Some Grammatical Constraints, on, oh, Interjections and Hesitations</td>
<td>242</td>
</tr>
<tr>
<td>David E. Johnson: Linking Antecedents and Semantic Representation</td>
<td>252</td>
</tr>
<tr>
<td>Lauri Karttunen (see A. Hakulinen)</td>
<td>262</td>
</tr>
<tr>
<td>John P. Kimball: The Grammar of Existence</td>
<td></td>
</tr>
<tr>
<td>Stephen Krashen (see S. Curtiss)</td>
<td>271</td>
</tr>
<tr>
<td>George Lakoff: Fuzzy Grammar and the Performance/Competence Terminology Game</td>
<td></td>
</tr>
<tr>
<td>Robin Lakoff: The Logic of Politeness; or, Minding Your P's and Q's</td>
<td>292</td>
</tr>
<tr>
<td>Don Larkin, Michael H. O'Malley: Declarative Sentences and the Rule-of-Conversation Hypothesis</td>
<td>306</td>
</tr>
<tr>
<td>John M. Lawler: Tracking the Generic Toad</td>
<td>320</td>
</tr>
</tbody>
</table>
Judith N. Levi: Where Do All Those Other Adjectives Come From? 332
Mark Liberman: Alternatives 346
Andreas Loertscher: On the Role of Nonrestrictive Relative Clauses in Discourse 356
Noriko McGawley: Boy! Is Syntax Easy! 369
Lise Menn: On the Origin and Growth of Phonological and Syntactic Rules 378
Patricia D. Miller: Bleaching and Coloring 386
John Miyamoto: Imitation and the Learning of Grammatical Rules 398
J. L. Morgan: How Can You Be in Two Places at Once When You're Not Anywhere at All? 410
Seiichi Nakada: Pseudo-Clefts: What Are They? 428
Anthony J. Narlo: The Origin of West African Pidgin 442
Ronald Neeld: On the Variable Strength of Island Constraints 450
Larry Nessel: The Weakening Chain in Natural Phonology 462
Frederick J. Newmeyer: Aspects of Prescriptivism 475
Michael H. O'Malley (see D. Larkin) 482
Emily Pope: Question-Answering Systems 493
Michael J. Reddy: Formal Referential Models of Poetic Structure
Marga Reis: Is There a Rule of Subject-to-Object Raising in German? 519
Richard A. Rhodes: Some Implications of Natural Phonology 530
David Rigler (see S. Curtiss) 542
Marilyn Rigler (see S. Curtiss) 549
Catherine Ringen (see G. Iverson) 568
Thomas Roeppe: Interpretive Semantics and Early Language Acquisition
John Robert Ross: The Same Side Filter 587
Pulavarthi Satyanarayana: Why Saying That Sentences Like This Are Unacceptable Is Wrong 597
Susan F. Schmerling: Subjectless Sentences and the Notion of Surface Structure 603
Margaret Seguin: The Interaction of 'Jeb Tek' ('Until') and NREG in Hindi (or, Did the Students Make Noise Until the Teacher Didn't Come?)
Holly Semiloff-Zelasko: Syncope and Pseudo-Syncope
Anjani Kumar Sinha: On Static Passive and Treatment of Some Idioms
Arthur K. Spears: Complements of Significant-Class Predicates: A Study in the Semantics of Complementation 627
Karunauri V. Subbarao: On the Inadequacy of the Structure-Preserving Constraint with Reference to Extraposition 639
Michael Szamosi: On the Unity of Subject Raising 652
James H-Y. Tai: Chinese as a SOV Language 659
Dale Terbeek: Six Dimensions of Vowel Quality 672
Ronnie Bring Wilbur: Reduplication and Rule Ordering 679
Victor H. Inge: I Forgot What I Was Going to Say 688
Arnold M. Zwick: The Analytic Leap: From 'Some Xs are Ys' to 'All Xs are Ys' 700
Presuppositions and Quantifiers

Roland R. Haussser
University of Texas at Austin

Van Fraassen's definition of a semantic presupposition (Van Fraassen, 1969) says that

1) sentence A presupposes sentence B if and only if A is neither true nor false unless B is true.

This is equivalent to

2) Sentence A presupposes sentence B if and only if
 a) if A is true then B is true
 b) if not-A is true then B is true.

One consequence of this definition is that every tautology is presupposed by every sentence. This leads to the question: which are the relevant presuppositions of a given sentence?

What we would like to find for every simple sentence A is a minimal and finite set \(\{B_1, \ldots, B_n\} \) of basic presuppositions, such that all the other presuppositions of A are entailed by \(\{B_1, \ldots, B_n\} \). Let us assume that the relevant or basic presuppositions of a sentence depend on the structure of the sentence itself: on its verbs, the types of noun phrases, quantifiers, etc.

Since presuppositions are only defined with respect to complete sentences let us say that those presupposition-guaranteeing properties or parts of a sentence (which we are about to search for) induce a presupposition. I will also use the term "presupposition inducer" or "P-inducer." We can now define the set of basic presuppositions in terms of the P-inducers of a simple sentence: The set of basic presuppositions contains all presuppositions which are P-induced.

In this paper I will only discuss which types of noun phrases induce existential presuppositions.

An example of an existential P-inducer are proper names; that is, any simple sentence containing some proper name Y presupposes another sentence of the type:

There exists Y.

An indefinite article + noun, on the other hand, never induces an existential presupposition; it may only lead to an assertion of existence.

Consider the following sentences as evidence for this distinction between the induction of an existential presupposition in case of a name and an existential assertion in case of an indefinite NP:

3) A: John kissed Mary \(\Rightarrow B: \) There exists Mary
3') A: John didn't kiss Mary \(\Rightarrow B: \) There exists Mary
4) A: John kissed a girl \(\Rightarrow B: \) There exists a girl
4') A: John didn't kiss a girl \(\not\Rightarrow B: \) There exists a girl

(Where \(\Rightarrow \) means entails and \(\not\Rightarrow \) means does not entail)

According to definition (2) the sentences in (3A) presuppose (3B).
(4) on the other hand is an instance of existential assertion, i.e. the existential entailment is lost if the noun phrase in question is in the scope of negation. Other types of noun phrases which are not P-inducers are any+noun and no+noun.

Now consider the following underlined types of noun phrases:

5) John (kissed/didn't kiss) the girl(s) at the party
 > B: There existed girls at the party

6) John (kissed/didn't kiss) every girl at the party
 > B: There existed girls at the party

7) John (kissed/didn't kiss) some girls at the party
 > B: There existed girls at the party

8) John (kissed/didn't kiss) all girls at the party
 > B: There existed girls at the party.

Sentences (5-8) demonstrate that the definite article+noun, every+noun, some+noun, and all+noun are, like names, types of existential P-inducers.

Sentences like:

9) Moses doesn't exist constitute a class of apparent counterexamples, because the proper name 'Moses' induces an existential presupposition while the verb phrase denies Moses existence. This paradox dissolves if we adopt Kripke's theory of description. According to Kripke a proper name like Moses is a rigid designator which designates the same object or individual in all possible worlds. The properties of this object might change from world to world, but, for example, in a possible world where Moses had stayed in Egypt, Moses would still be Moses. In the framework just outlined, existence in the sense of physical existence is simply another property which an object may or may not have. Sentence (9) presupposes that Moses has a referent, but not that Moses has a physically existing referent.

 Let us extend this refined notion of existential presupposition to the other P-inducers which are not rigid designators, i.e. the "there exists" - phrase in the B-sentences of (3-8) is to be understood in the sense of asserting an abstract referent - not in the sense of asserting physical existence.5

As result of adopting this more abstract notion of existential presupposition sentences such as

10) The present King of France is bald
do not necessarily suffer from a presupposition failure. We may assume that the definite description in (10) denotes some hypothetical King who lacks the property of being physically existent. The deviance of (10) then derives from the fact that the predicate being bald requires that its argument denotes a referent which is physically existent.

 A related matter is Karttunen's examples of Plugs, e.g.

11) Harry promised Bill to introduce him to the present King of France.
Karttunen observes that in (11) the existential presupposition in the sense of physical existence is "filtered out". However, if we use instead the more abstract notion of existential presupposition, (11) might still presuppose the existence of a referent. In that case there would be no difference between (11) and a similar sentence containing a rigid designator, for example:

12) Harry promised Bill to introduce him to Santa Claus.

The existential presupposition (in our sense) does not fail in (12) since Santa Claus is a perfectly good referent. As an alternative to Karttunen's interpretation we might say that what is "filtered out" by a verb like 'promise' are the contingent correlations which hold between semantic entities relative to the real world. Take for example

13) John kissed the second movement of Beethoven's Ninth versus

14) John promised to kiss the second movement of Beethoven's Ninth.

Since we all agree that the second movement of the Ninth exists (as a concept), neither (13) nor (14) suffer from failure of an (abstract) existential presupposition. The deviance of (13) can be derived from the fact that kiss (in its literal sense) requires subject and object NPs that denote referents which have the property of being physically existent in the same possible world. With a sentence like (13) as complement of promise or want, etc. the deviance disappears, because John is perfectly entitled to promise or want things which are impossible because of certain contingent facts of reality.

A notion of existential presupposition in the sense of physical existence therefore coincides with a selectional restriction. (A famous example of violation of selectional restrictions is Chomsky's sentence "colorless green ideas sleep furiously".) The notion of abstract existential presupposition, on the other hand, refers to a well-defined semantic notion. In connection with the concept of P-inducing noun phrases it will allow us to account for the difference in acceptability between sentences like (15) and (18) vs. (16) and (17).

What is necessary to obtain a true presupposition failure? Examples of a truthvalueless sentence are the sentences in (15):

15) *John didn't kiss \begin{align*}
\{ & \text{the girl(s)} \\
& \text{every girl} \\
& \text{some girls} \\
& \text{all girls} \\
\end{align*} \text{at the party - in fact there weren't any.}

The in fact clause does not contradict any property such as physical existence of the presupposed referent; what is denied for the given context is the existence of such a referent altogether. It is because the examples in (15) do not permit the supply of some imagined referent that they are clear examples of a presupposition failure. Notice that the corresponding sentences without P-inducers are bivalent:
16) John didn't kiss \{ a girl \in girls \} at the party - in fact there weren't any girls.

That it is really existence of a referent which is crucial for existential entailment and not some property like physical existence is illustrated by the fact that

17) John kissed \{ the girl(s) \} at the party - even though there weren't any real ones

\begin{enumerate}
\item \textit{every girl}
\item \textit{some girls}
\item \textit{all girls}
\end{enumerate}

is acceptable despite the fact that (17) requires some extraordinary context - we may assume that the party was a seance attended only by men. As contrast consider

18) *John kissed \{ the girl(s) \} at the party - even though there weren't any

\begin{enumerate}
\item \textit{every girl}
\item \textit{some girls}
\item \textit{all girls}
\end{enumerate}

which is unacceptable since the 'there weren't any' - clause denies the existence of any kind of referent.

Let us now look at modal and opaque contexts. In these contexts the indefinite \textit{article+noun} and \textit{any+noun} lose their existential entailment just as they do in the scope of negation (c.f. (4)). Further, the types of P-inducers under consideration (i.e. \textit{names}, \textit{every+noun}, \textit{some+noun}, \textit{all+noun}, \textit{the+noun}) presuppose existence in opaque contexts just as in transparent contexts. Consider for example:

\textit{modal context}

19) This job can be done by \{ a student \in students \} \implies There exist students

\begin{enumerate}
\item \textit{any student}
\end{enumerate}

20) This job can be done by \{ Bill \in the students \} \implies There exist Bill

\begin{enumerate}
\item \textit{every student}
\item \textit{some students}
\item \textit{all students}
\end{enumerate}

\textit{opaque context?}

21) John wants to catch \{ a greeneyed unicorn \in greeneyed unicorns \} \implies There exist

\begin{enumerate}
\item \textit{any greeneyed unicorn}
\item \textit{greene. unic.}
\end{enumerate}

22) John wants to catch \{ every greeneyed unic. \in some green. unicorns \} \implies There exist

\begin{enumerate}
\item \textit{all green. unicorns}
\item \textit{greene. unic.}
\end{enumerate}

The question now is: how should we formally represent those types of noun phrases which always induce an existential presupposition - in contrast to the other types of noun phrases which never induce an existential presupposition?

In symbolic logic the traditional representation of both
some+noun and a+noun is a formula involving a nonrestricted existential quantifier, such as
\[\exists x (g(x) \cdot f(x)) \]

The representation of both, all+noun and any+noun is a formula involving a nonrestricted universal quantifier, such as
\[\forall x (g(x) \cdot f(x)) \]

These representations are unsatisfactory in the light of the fact that some and all induce existential presuppositions while a and any do not. I propose that in addition to the so-called 'non-restricted' quantification we should employ a second type of quantification - 'restricted' quantification - which lends itself to interpretation as a presupposition inducer. This restricted quantification has the form
\[\exists x \in \mathcal{G} [f(x)] \]

Let us assume that an 'elementary' formula like (23) is truthvalueless if the domain \(\mathcal{G} \) of the quantifier is empty. Otherwise the formula is either true or false. We define elementary formulae as wellformed formulae which do not contain any logical connectives (\(\& \), \(\lor \), \(\neg \)) and are not unanalyzed propositions. All other wff. are called compound formulae. For compound formulae let us assume the rules of van Fraassen's semi-truthfunctional connectives. I follow Herzberger (1970) and Karttunen (1973a) in presenting van Fraassen's system in form of truthtables.

\[
\begin{array}{ccc|c|c}
\& & T & F & \# \\
T & T & F & \# \\
F & F & F & F \\
\# & \# & F & (\#) \begin{array}{c}
\{F\}
\end{array}
\end{array}
\quad
\begin{array}{ccc|c|c}
\lor & T & F & \# \\
T & T & T & T \\
F & T & F & \# \\
\# & T & \# & \{\#\} \begin{array}{c}
\{T\}
\end{array}
\end{array}
\]

Let us call a sentence in English a 'simple' sentence if its corresponding logical formula is elementary. Note that a simple sentence may have relative clauses or sentential complements as long as they can be represented in the logical formula without use of logical connectives.

Our assumption that an elementary formula is truthvalueless if the domain of a quantifier is empty applies to restricted as well as nonrestricted quantification. In case of nonrestricted quantification, however, the domain of the quantifier is the whole universe and could be empty only in the degenerate case of an empty universe.

What is the relation between a set (as used in restricted quantification) and a predicate (as used in nonrestricted quantification)? Letting \(g \) denote the property of being a girl, the extension of \(g \) is the set \(\mathcal{G} \) of all girls:
\[\forall x (g(x) = x \in \mathcal{G}) \]

Let us call \(\mathcal{G}^* \) the power set of \(\mathcal{G} \). The members of \(\mathcal{G}^* \) are all the
sets γ, such that γ is a set of girls:

26) \[G^* = \{ \gamma | \gamma \subseteq G \} \]

In addition to g and γ let us define

\[k(x, y) = \text{x kiss y} \]

$J = \text{John}$

\[P = \{ x | x = \text{individual present at a certain party} \}. P^*(\emptyset) \]

We can now represent

27) John kissed girls at the party

as \[\exists x \in P [(g(x).k(J,x))] \]

If there is no referent in P of which $g(x)$ holds (27) has the truth-value false. The representation of

28) John kissed some girls at the party

is, however \[\exists \gamma, \gamma \subseteq P (\exists x \in \gamma [k(J,x)]) \]

Now if γ is empty, (28) is not false but truthvalueless.

The crucial sentence

29) John didn't kiss every girl at the party - in fact there weren't any.

is represented as \[\exists \gamma, \gamma \subseteq P, \neg(\exists x \in \gamma [k(J,x)]) - \text{in fact} \neg \exists x (g(x).x \in P) \]

and is truthvalueless, as required. The reason is that because of $\neg \exists x (g(x).x \in P)$ the $\gamma \subseteq P$ must be the empty set (see (26)). The corresponding sentence without a P-inducer

30) John didn't kiss any girl at the party - in fact there weren't any

is represented as \[\forall x \in P \neg [g(x).k(J,x)] - \text{in fact} \neg \exists x (g(x).x \in P) \]

and this can be true.

Let us now have a look at the available quantifier expressions in our formal language and their counterpart in English.

(Assume that $I(x)$ means x laughs).

31) Types of noun phrases which are not P-inducers

\begin{align*}
\{ \text{a girl laughs} \} & \quad \text{is represented as} \quad \exists x (g(x).I(x)) \\
\{ \text{girls laugh} \} & \quad \text{or equivalently as} \quad \forall x (g(x) \supset I(x)) \\
\{ \text{a girl doesn't laugh} \} & \quad \text{is represented as} \quad \exists x (g(x).\neg I(x)) \\
\{ \text{girls don't laugh} \} & \quad \text{or equivalently as} \quad \forall x (g(x) \supset \neg I(x)) \\
\text{no girls laugh} & \quad \text{is represented as} \quad \neg \exists x (g(x).I(x)) \\
\text{or equivalently as} \quad \forall x (g(x) \supset \neg I(x)) \\
\{ \text{any girl laughs} \} & \quad \text{is represented as} \quad \exists x (g(x).I(x)) \\
\{ \text{no girl doesn't laugh} \} & \quad \text{or equivalently as} \quad \forall x (g(x) \supset I(x)) \\
\{ \text{any girl doesn't laugh} \} & \quad \text{or equivalently as} \quad \forall x (g(x) \supset \neg I(x)) \\
\end{align*}

Space does not permit me to go into the arguments for treating no=not...any (or, equivalently no...not=any).

A reason for the representation (31) is that a sentence does
not have an existential entailment if the \(\exists x \) in the logical repre-
sentation is inside the scope of negation. If, however, the \(\exists x \)
is outside the scope of negation we do find an existential entail-
ment for the related sentence. The entailments are obtained by
simplification of the conjunctive formulae.

In the class of nounphrases which are P-inducers we must
distinguish between every+noun and some+noun on the one hand and
names, definite noun phrases, and noun phrases with a possessive
or demonstrative pronoun on the other hand, because the latter
involve some notion of uniqueness in addition to the induction of
an existential presupposition. The logical representation of
this additional uniqueness feature will not concern us here.

Noun phrases which induce a simple existential presupposition
(namely every, all, some and several + noun) are illustrated in (32).

32) P-inducers which do not involve uniqueness

\[
\begin{align*}
\{ \text{some girls laugh} & \} \quad \text{is represented as } \exists x \in G \left[I(x) \right] \\
\{ \text{not all girls don't laugh} & \} \quad \text{or equivalently as } \neg \forall x \in G \neg \left[I(x) \right]
\end{align*}
\]

etc.

The convention that the formulas of (32) are truthvalue-
less if \(G \) is empty insures that the existential presupposition of
the corresponding sentences is systematically represented. (31)
and (32) illustrate that the use of both nonrestricted and restrict-
ed quantification makes it possible to express all relevant exist-
ential entailments and presuppositions directly in the formal
language. Using two types of quantification also alleviates the
chronic shortage of formal quantifier expressions suitable for
representing the large number of English quantifier words (we still
have not yet differentiated between all, every and both, or some
and several).

The mechanism of this logic provides a logical foundation for
the description and explanation of those phenomena which Karttunen
described indirectly by means of his filter conditions.

For Karttunen, Filters are the logical
connectives if...then, and, and either...or. The problem is the
following: the consequent of

33) If baldness is hereditary, then all of Jack's children are
bald
as well as of

34) If Jack has children, then all of Jack's children are bald
presupposes

35) Jack has children.
The question is: why does only (33) as a whole presuppose (35)
while (34) as a whole doesn't.

This disappearance of a presupposition is called 'filtering'.
One of Karttunen's filter conditions (Karttunen 1973a) says:
"Let S stand for any sentence of the form 'if A then B'.

..."
(34) is a sentence to which the underlined part of his condition applies. The condition accounts for the fact that (34) is bivalent even if John doesn't have children.

However, the bivalence of (34) can alternatively be derived directly from the logical relations which hold in (34): if the antecedent is true then we can logically derive the nonemptiness of the set of John's children (i.e. existential presupposition fulfilled). For the case that the antecedent is false let us consider the form \(\neg A \vee B \) which is logically equivalent to \(A \Rightarrow B \). Since the antecedent is false, \(\neg A \) is true. Therefore the whole disjunction is true (and a fortiiori bivalent) according to Van Fraassen's system.

Although Van Fraassen's system works in case filtering takes place, Karttunen dismissed Van Fraassen's system as a logical foundation for his filter conditions for the following reason:

35) Paris is the capital of France and the present King of France is bald as well as

36) Marseille is the capital of France and the present King of France is bald

Intuitively presuppose that there exists a present King of France. But (36) is false in Van Fraassen's system while (35) is truth-valueless. I think that these truthvalues are intuitively satisfying insofar as sentence (36) must be false because one conjunct is false (Marseille is not the capital of France), while sentence (35) is not necessarily false since one conjunct is true and the other is neither true nor false.

But on the other hand, if both sentences presuppose that there exists a present King of France and if this presupposition fails in both sentences then both must be truthvalueless according to Van Fraassen's definition of a presupposition. Assuming that this definition is the right one, Karttunen concludes that Van Fraassen's logic does not give satisfactory results for natural language.

The dilemma can be alternatively resolved if we keep Van Fraassen's logic but change the definition of a presupposition as follows:

37) A presupposes B if and only if
 a) A is an elementary formula
 b) A entails B
 c) \(\neg A \) entails B

This definition differs from Van Fraassen's in that it restricts the notion of a presupposition to elementary formulae; compound
formulae do not have presuppositions, even though the presuppositions of their elementary subformulae will be reflected in the truthvalue (through the mechanism of the logic).

Our definition stands in contrast to the so-called "cumulative hypothesis" (Morgan, 1969) which assumes that complex sentences usually have the presuppositions of their parts. Karttunen's system of 'plugs and filters' is an attempt to describe exceptions to the cumulative hypothesis.

I will now show that there is a class of sentences which can not be handled by the filter conditions and which furthermore exhibit a semantic relation between the truthvalue of the whole sentence and the truthvalues of it's parts that is not covered by Van Fraassen's definition of a presupposition.

Consider the following sentence:

38) Either John has stopped beating his wife or John hasn't yet begun beating her.

The first disjunct of (38) presupposes

39) John has beaten his wife previously.

while the second conjunct of (38) presupposes

40) John has not beaten his wife previously.

If both (39) and (40) were presuppositions of (38) then (38) would be analytically truthvalueless - in contrast to our intuition. Therefore let us see if Karttunen's filter condition gets rid of one of the two contradicting presuppositions.

Karttunen's filter condition for disjunctions:

41) Let S stand for any sentence of the form 'A or B'.

 a) If A \supset \neg C, then S \supset \neg C.

 b) If B \supset \neg C, then S \supset \neg C, unless \neg A \supset \neg C. 12

(Where \supset means presupposes and \supset means entails)

The only way that one of the two contradicting presuppositions (39) [let's call it C] and (40) [let's call it \neg C] get filtered out in Karttunen's system requires that \neg A \supset \neg C but this is not the case:

\neg A (i.e. "John did not stop beating his wife") does not entail \neg C (i.e. "John did not beat his wife previously").

In fact, \neg A (as well as A) entails the contrary of \neg C, namely C.

Another example is

42) Either Bill didn't notice that John stayed at home all the time or John returned to his home secretly after 10 A.M.

(Let's assume that the speaker is interested in John's whereabouts last night.) (42) has a similar structure to (39), namely

43) \neg A (\supset \neg C) \lor B (\supset \neg \neg C)

where

A: Bill noticed that John was at home all the time
B: John returned secretly after 10 A.M.
C: John was at home all the time.

Since in a sentence like (42) neither all the presuppositions of A nor of B turn out to be presuppositions of \(\neg A \lor B\) (as predicted by the filter condition) part (a) as well as part (b) of filter condition (41) is insufficient.

Let us now see how Van Fraassen's logic would handle sentences of type (43) - using the following truth table.

44)
\[
\begin{array}{c|c|c|c|c}
C & \neg C & \neg A & B & \neg A \lor B \\
T & F & T & F & F \\
F & T & # & T & T
\end{array}
\]

We see that a sentence like (38) or (42) will be either true or truthvalueless. (42) is true if one conjunct is true and the other is truthvalueless. If one conjunct is false and the other truthvalueless, (42) is truthvalueless.

It is curious to note that the negation of (42) leads to an analytically non-true sentence.

45)
\[\neg \text{(negation of (42))}
\]

*Bill noticed that John was at home all the time and John did not return after 10 A.M.

((45) is unacceptable if we assume choice negation in the second conjunct)

The truth table for (45) is

46)
\[
\begin{array}{c|c|c|c|c|c}
C & \neg C & A & \neg B & A \land \neg B \\
T & F & T & F & F \\
F & T & # & T & T
\end{array}
\]

(45) will be false, if John was at home all the time but Bill didn't notice it or if John wasn't at home all the time but did return.

It is important to notice that if C is truthvalueless then both A and B will be truthvalueless (because A \(\Rightarrow C\) and B \(\Rightarrow \neg C\)) and therefore (43) and (45) will be truthvalueless. In other words, not the truth but the bivalence of C is a necessary (but not sufficient) condition for the bivalence of (43) and (45).

Now we have two alternatives:

1) The semantic relation between (42) and (43C) or (45) and (43C) is interpreted as an instance of another necessary condition for bivalence (- in addition to presuppositions as defined in (1)).

2) Or we adopt definition (37) and treat (42) and (45) simply as a result of the interaction between the presuppositions of the simple subsentences and the mechanism of Van Fraassen's logic.

The ultimate consequence of choosing between (1) and (2) is that
in the first case we retain the basis for the cumulative hypothesis—
and consequently for filters, while alternative (ii) does not
allow for the cumulative hypothesis (since the notion of a pre-
supposition is restricted to simple sentences by definition).
Since the filter conditions turned out to be inadequate and
cannot be easily extended to account for a sentence like (42)
(because the conditions are based on a definition of presuppositions
which does not apply in a case like (42)) alternative (ii) is the
proper choice. This choice has the advantage that those grounds
for objection to Van Fraassen's logic discussed in connection with
(35) and (36) are eliminated.

The linguistic concept of P-inducers - as proposed in the
first part of this paper goes beyond definition (37) in that it
relates presuppositions not only to simple sentences but to types
of noun phrases and certain verbs (factive verbs seem likely to
be P-inducers). P-inducers are supposed to allow us to discover
the set of basic presuppositions of a simple sentence, which is a
necessary step to determine the truthvalue of this sentence. A
simple sentence will be bivalent if it does not contain any P-inducers.
The close relationship between certain sentence elements and
presuppositions (which is the basis for the concept of P-inducers)
seems to be intuitively one more reason to define presuppositions
on a level that is below the level of a whole complex sentence.

Footnotes
1) I would like to thank Stanley Peters and Jack Murphy for
showing me in which direction to turn when I reached theoretical
impasses. Without their patient and insightful help I would still
be bogged down in the many paradoxes which traditionally plague
this topic.

Furthermore, I would like to thank Lauri Karttunen for taking
the time to make some detailed and helpful comments on the semi-
final version of this paper and Mike Daly for his invaluable help
in editing.

2) The relation between A and B in (2a,b) is called necessita-
tion or semantic entailment (Van Fraassen, 1969). Definition
(2) is equivalent to

A presupposes B if and only if

a) A entails (necessitates) B
b) (not-A) entails (necessitates) B.

3) By 'simple sentence' I mean a sentence that does not contain
the connectives "or", "if...then", or "and". This restriction
to 'simple sentences' will be motivated in connection with the
discussion of Karttunen's "Filters".

4) In (4') A does not entail B because A can be true even if
B is false. In (3), (3') and (4) on the other hand, the truth
of the B-sentence is a necessary condition for the truth of the
corresponding A-sentence.
5) Names differ from other P-inducers in that names denote the same referent in all possible worlds. A definite description like "the girls at the party" induces an existential presupposition, but the referents may differ with possible worlds.

6) Van Fraassen (1968) mentions two different kinds of negation:

- **Choice negation**: (not-A) is true (respectively, false) if and only if A is false (respectively true);
- **Exclusion negation**: (not-A) is true if and only if A is not true, and false otherwise.

If we want to talk about presupposition we must assume the first kind of negation (otherwise every valid sentence is presupposed by every valid sentence). In the course of this paper we will always assume choice negation.

7) Another class of P-inducers seem to be the factive verbs. Notice that factive verbs presuppose the truth of their complement even if they are embedded under opaque verbs:

 a) *John {promises} that Mary regrets that two and two is five.

 *John wants Mary to regret that two and two is five.

 But:

 b) John {promises} that two and two is five.

Since for example 'promise' is said to be a "Plug" the corresponding (a) sentence should supposedly not be illformed.

The only instances where presuppositions are "filtered out" arise with 'verbs of saying'. However, the complements of these verbs are known to be systematically ambiguous between being interpreted as a name or as a proposition. Since names do not have truthvalues this exception is to be expected.

8) The restriction to elementary formulae is necessary because of the characteristics of Van Fraassen's logic, which provides for bivalence in complex formulae even if some of their constituents are truthvalueless (for example 'Tv#' is T, 'F.#' is F etc.).

9) The domain G of the quantifier is a set of referents.

10) If A and B are both truthvalueless A&B will be false if it is a contradiction in twovalued logic and truthvalueless otherwise.

11) We might represent "in fact" in the logic by the connective '!

12) Since the here discussed sentences do not require iteration of the filter condition, I quote Karttunen (1973a).

13) (43) and (45) have still another presupposition, let's call it D,

 D: John was at home after 10 A.M.
which is presupposed by A, entailed by C and entailed by B. We have here an instance of a basic presupposition C such that it entails the non-basic presupposition D. Since D is entailed by C the truthvalue of D is irrelevant for the truthvalue of (43) or (45).

Karttunen, L. (1973b) "Remarks on Presuppositions", presented at the Conference on Performatives, Conversational Implicature and Presuppositions (Performadillo), University of Texas, March 1973

Leonhard Linsky, ed. (1971) "Reference and Modality", Oxford Reading in Philosophy, Oxford University Press

