
Computational Foundations

of Database Semantics

Roland Hausser

Universität Erlangen-Nürnberg (em.)

rrh@linguistik.uni-erlangen.de

May 23, 2016

In the nineteen seventies and eighties, linguists gave their phrase structure gram-

mars of small natural language fragments to computer scientists for turning them

into running software. Theoretically, context-free PS grammar runs in n3 time,

but the linguistically sophisticated fragments parsed very slowly. Moreover, many

refinements broke up the dominant theory of nativism into numerous subtheories,

creating an embarrassment of riches.

The response was broadening the empirical base regarding completeness of (i)

data coverage and of (ii) function. Data coverage was addressed by the rise of

corpus linguistics. Instead of having to choose from a bewildering variety of sub-

theories providing alternative analyses of traditional examples, attention turned to

building large collections of “real” language. The method of choice for analyzing

these data (a) automatically and (b) free from any of the available subtheories is

statistics. Corpus linguistics, like the theories it set out to replace, is sign-based.

Completeness of function, however, presupposes an agent-based approach such

as Database Semantics. DBS (1) integrates external interfaces for recognition and

action, a memory, and an algorithm for mapping between them; (2) improves the

data coverage by a continuous cycle of upscaling and automatic verification; and

(3) combines traditional notions of grammar with a time-linear derivation order,

resulting in real time performance. This paper describes the contact points between

the linguistic aspects of DBS and its foundations in computer science.

1 String Search

An agent-based approach requires an explicit theory of how communicating with natural lan-

guage works (CLaTR 4.1.2). Natural language processing (NLP), in contrast, tries to get by

without natural language understanding, as shown by the direct approach in machine translation

(FoCL 2.4.2). Nevertheless, some computational methods of NLP are also essential for build-

ing a talking robot, especially string search. Assuming a possible modality conversion between

1



speech and writing (CLaTR Sect. 2.3), string search is based on treating natural language sur-

faces as a numbered list of alphanumerical characters, e.g. letters, as in the following example:

1.1 TURNING NATURAL LANGUAGE SURFACES INTO A NUMBERED LIST

1 2 3 4

m: 01234567890123456789012345678901234567890...

S: She was the younges t of the two daught e r s...

Line S is the text to be searched (here from Jane Austen’s EMMA, beginning of the 2nd para-

graph.) Its letters are numbered in line m, with each number directly above the associated letter

in line S. Turning a text automatically into a numbered list is computationally straightforward.

For simplicity and abstractness, the following example uses the letters ABCDE and space only.

In addition to the lines m and S, there is the line W showing the abstract word searched for in S

and the line i showing the numbering of the letters in W:

1.2 ABSTRACT EXAMPLE OF THE KMP ALGORITHM

1 2

m: 01234567890123456789012

S: ABC ABCDAB ABCDABCDABDE

W: ABCDABD

i: 0123456

Naively, instances of W in S may be found by moving W letter by letter along S, comparing

each letter of W with the letter currently opposite in S. The worst case is an S sequence which

matches W except for the last letter, such as letter 10 in S, i.e. space, and letter 6 in W, i.e. D.

The KMP algorithm by Knuth, Morris, and Pratt (1972) achieves a substantial improvement of

efficiency over the naive approach by avoiding needless comparisons between W and S: instead

of moving W through S letter by letter, the algorithm jumps ahead by ignoring letters inferred to

be matching failures. For example, after trying ABCDAB unsuccessfully beginning with letter

4 in S, the algorithm restarts the next matching attempt with letter 11 (and not with 5) in S.

Search based on numbered characters may also be applied to tree structures by mapping trees

automatically into equivalent alphanumerical sequences. Consider the following example of two

phrase structure trees conjoined in an extrapropositional coordination:

1.3 PS TREE REPRESENTING Julia knows John. John knows Julia.

S1

NP VP

V NP

S2

NP VP

V NPjulia 

john

john

julia

S

know know

2



In this constituent structure (FoCL Sect. 8.4), upper case letters are used for nonterminal nodes,

while lower case letters are used for terminal nodes (words).

By interpreting the format A[B C] as (i) A dominates B and C and (ii) B precedes C, the tree

1.2 may be mapped automatically into an equivalent list of numbered characters:

1.4 TRANSFORMING THE TREE 1.3 INTO A NUMBERED LIST

1 2 3 4

m: 01 2 3 4 5 6 789 0 1234 5 678 9 0 1 23456 7 8 9 0 1 234 5 678 9 012 3 4 5 6789

S: S[S1 [NP[julia] ] [VP[ [V[know] ] [NP[john] ] ] ] [S2 [NP[john] ] [VP[V[know] ] [NP[julia] ] ] ]

In this format, the KMP algorithm may be applied to millions of trees, as in a tree bank. The

representation in line S is susceptible for matching with abstract patterns, allowing processing

at higher levels of abstraction.

Another application of numbered lists is the automatic conversion of a text into an inverted file

(Zobel and Moffat 2006). While the KMP algorithm is for batch mode computing a prespecified

list of key words in large text files, the inverted file method allows on-the-fly incremental search.

An inverted file specifies for each alphanumerical sign all its positions in the numbered list, as

in the following example:

1.5 INVERTED FILE FOR THE ENGLISH SENTENCE IN 1.1

a: 5, 33

b:

c:

d: 32

e: 2, 10, 17, 26, 38

f:

g: 16, 26, 35

h: 1, 36

i:

j:

k:

l:

m:

n: 15

o: 13, 30

p:

q:

r: 39

s: 0, 6, 18, 40

t: 8, 19, 24, 28, 37

u: 14, 34

v:

w: 4, 29

x:

y: 12

z:

3



For example, t: 8, 19, 24, 28, 37 means that the 8th, 19th, 24th, 28th, and the 37th letter in 1.1

is a t. If the user spontaneously decides to look for a word, e.g. two, in the text of 1.1, typing a

search command and the first letter of the word, i.e. t, will highlight its positions in the online

text on the screen. When the second letter w is typed, the inverted file line w: 4, 29 is activated

and only positions of a t followed by a w are highlighted, i.e. 28, 29. When the third letter o is

typed, the inverted file line o: 13, 30 is activated and positions of a tw followed by an o, i.e. 28,

29, 30, are highlighted. Just as turning a written text into a numbered list, turning a numbered

list automatically into an inverted file is computationally simple and efficient.

A third kind of a string matching algorithm is building and using a trie structure as a lexical

storage facility (Briandais 1959, Fredkin 1960, Flouri 2012). DBS uses trie structures for the

automatic (i) segmentation of word forms into allomorphs1 and the (ii) lookup of their lexical

definition (FoCL Sect. 14.3) during automatic word form recognition. The following example

sketches the segmentation of the word form youngest of 1.1 into its allomorphs young and est:

1.6 EXAMPLE OF A DBS TRIE STRUCTURE STORING young AND est

2

3

4

5

[entry: est]s

[entry: young]g

ya b c     1 d ...e

s o

u

n

f ... x z

The top level shows the letters in their alphabetical order. At this level, storage and retrieval of a

lexical entry begins with the first letter of the input surface, here y. At the 2. level below the y,

the second letter of the input surface, here o, is connected to the first. At the 3. level, the third

letter of the input surface, here u, is connected to the second letter, and so on. The lexical entry

to be looked up is stored at the last letter of the input surface, here the g at level 5.

As young- continues into young-est, the algorithm jumps to the letter e at the top level, walks

down from there to the final letter t of est, and retrieves another entry. The entries are combined

by morphological rules of English (FoCL Sect. 14.4) and result in an analysis like “superlative

form of the adj young” (categorization and lemmatization). By segmenting complex word forms

into their allomorphs, here young and est, their entries may be found and combined into lexical

analyses with any desired degree of grammatical detail.

On the one hand, the computational method of trie structures is general in that it may be

used to find entries of any kind, as in astronomy, biology, chemistry, etc. On the other hand, it

supports linguistic desiderata such as the on-the-fly analysis of neologisms and the rule-based

treatment of irregular paradigms (FoCL Chaps. 13–15). By testing a system of automatic word

form recognition on suitable data, errors may be identified and permanently corrected by adding

missing entries to the lexicon and improving existing entries and rules.2 The use of a trie struc-

ture constitutes the first of several clearly defined contacts between DBS and computer science.

1In linguistics, the smallest meaningful entity in a word form is called a morpheme. Alternative forms of a mor-

pheme, e.g. wolf, wolv-, are called allomorphs (FoCL Chap. 13).
2This is in contradistinction to the statistical tagging of today’s corpus linguistics (FoCL Sect. 15.5).

4



2 Data Structure

In DBS, the allomorphs and their combination into word forms share a basic format, called

proplet.3 Proplets are the building blocks of content. An elementary language content is a word

form proplet. A complex content is formed by a set of proplets concatenated by address, at the

phrasal and clausal levels of grammar. For the abstract reconstruction of cognition, proplets play

a similar role as the cell in biology and the atom in physics and chemistry (CLaTR Sect. 1.5).

From the view point of computer science, proplets are an abstract data type. Called data struc-

ture in DBS,4 a proplet is defined as a nonrecursive feature structure with ordered attributes:5

2.1 ABSTRACT EXAMPLE OF A PROPLET AS A DATA STRUCTURE








attribute-1: value-a1 value-a2 ...

attribute-2: value-b1 value-b2 ...

. . .

attribute-n: value-m1 value-m2 ...









A proplet is nonrecursive because values are flat, i.e. they may not themselves be feature struc-

tures. Instead, an attribute takes a list of n (n≥0) elementary items as values. The order in the

column of attributes is fixed by definition.6 Otherwise, proplets as a computational data struc-

ture are completely general: they may be defined for any column of attributes and for any list of

elementary items as value.

This makes proplets versatile for empirical purposes, as shown by the following examples:

2.2 THE SIX MAIN KINDS OF PROPLETS ILLUSTRATED FOR GERMAN

N, symbol N, indexical N, name A, symbol A, indexical V, symbol




























sur: Dach

noun: roof

cat: snp

sem: def sg

fnc: see

mdr: red

nc:

pc:

prn: 1

























































sur: ihn

noun: pro3

cat: obq

sem: sg m

fnc: see

mdr:

nc:

pc:

prn: 2

























































sur: Waldi

noun: (dog 23)

cat: snp

sem: nm m

fnc: see

mdr:

nc:

pc:

prn: 3

























































sur: schwarz

adj: black

cat: adn

sem: pad

mdd: book

mdr:

nc:

pc:

prn: 4

























































sur: dort

adj: loc2

cat: adv

sem:

mdd: sleep

mdr:

nc:

pc:

prn: 5

























































sur: las

verb: read

cat: #ns3′ #a′ decl

sem: past

arg: John book

mdr:

nc: (sleep 7)

pc:

prn: 6





























The sur(face) attributes take language-dependent word form surfaces as their value. The core

attributes in second position distinguish between noun, verb, and adj proplets; their core values

3The term is coined in analogy to droplet, indicating the function of proplets as the basic elements of propositions.
4Early computer science distinguished between a data structure for certain hardware parts and an abstract data type

for software constructs. Today, this distinction has been eroded by a continuous process of abstracting away from

the hardware level. DBS uses the shorter and simpler term data structure to characterize a basic abstract format,

regardless of how it may be realized at the hard ware level.
5A proplet is a highly restricted case of a feature structure, generally defined (Carpenter 1992) as (i) a(n unordered)

set of features and features defined as attribute value pairs (avp) which may (ii) take feature structures as values.

Mathematically, a proplet seems to be an instance of a distributive lattice, which would connect DBS to the

important field of order theory.
6Unordered items are as inefficient for computers to process as they are cumbersome for humans to read.

5



may be of the sign kinds symbol,7 indexical, or name. In accordance with the Seventh Principle

of Pragmatics (PoP-7, FoCL 6.1.7), nouns may take symbols, indexicals, and names, adjs may

take symbols and indexicals, and verbs may take only symbols as their core values.

The features cat and sem specify grammatical properties such as number, gender, or tense.

The attributes fnc (functor), arg(ument), and mdd (modified) provide the slots for obligatory

continuation values, while the attributes mdr (modifier), nc (next conjunct), and pc (previous

conjunct) provide the slots for optional continuation values. The values are supplied by cross-

copying rules (5.1) during syntactic-semantic parsing in recognition, e.g. the hear mode, which

turn lexical proplets into the concatenated proplets of a complex content. The prn value specifies

the number of the elementary proposition which a content proplet belongs to.

Additional systematic distinctions result from the dichotomies between lexical and content

proplets and between language and context proplets. They may be illustrated as follows:

2.3 FOUR PROPLET VARIANTS RESULTING FROM TWO DICHOTOMIES

(i) lexical language (ii) lexical context (iii) content language (iv) content context




























sur: Dach

noun: roof

cat: sn

sem: sg

fnc:

mdr:

nc:

pc:

prn:

























































sur:

noun: roof

cat: sn

sem: sg

fnc:

mdr:

nc:

pc:

prn:

























































sur: Dach

noun: roof

cat: snp

sem: def sg

fnc: see

mdr: red

nc:

pc:

prn: 23

























































sur:

noun: roof

cat: snp

sem: def sg

fnc: see

mdr: red

nc:

pc:

prn: 23





























Proplets (i) and (ii) are lexical (no continuation and prn values), but differ in that (i) is a language

proplet (sur value) while (ii) is a context proplet (no sur value). Proplets (iii) and (iv) are content

(nonlexical) proplets (nonempty continuation and prn slots), but differ in that (iii) is a language

proplet (sur value) while (iv) is a context proplet (no sur value). Proplets (i) and (iii are language

proplets (nonempty sur slots), but differ in that (i) is lexical (no concatenation) while (iii) is a

non-elementary content (concatenated). Variants (ii) and (iv) are nonlanguage (context) proplets,

but differ in that (ii) is lexical while (iv) is concatenated. The use of proplets as a data structure

constitutes the second of several clearly defined contacts between DBS and computer science.

3 Content

Agent-based DBS divides the mechanism of natural language communication into the hear, the

think, and the speak mode. The hear mode maps unanalyzed external surfaces into content, the

think mode selectively activates content for recall, reasoning, and action, and the speak mode

maps activated content into the unanalyzed surfaces of a language of choice. While the external

surfaces are concretely given as sound patterns or dots on paper which may be measured by the

natural sciences, the associated encoding and processing of content must be reconstructed via

functional equivalence between the artificial agent and the human prototype (CLaTR 1.1.1).

7We are following the terminology of Peirce (CP 2.228, 2.229, 5.473).

6



As an elementary content, a proplet combines two orthogonal aspects: (i) the semantic core

and (ii) the combinatorics. The semantic core is coded by the core value, while the combina-

torics are coded by the remainder of the proplet, called the proplet shell (CLaTR Sect. 6.6).

The task of a proplets shell is to code human language intuitions regarding such grammatical

properties as number, gender, tense, mood, as well as valency, agreement, functor-argument,

and coordination. The following example shows a proplet shell taking different core values:

3.1 SINGLE PROPLET SHELL TAKING DIFFERENT CORE VALUES

proplet shell context proplets




























sur:

noun: α

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:





























⇒





























sur:

noun: square

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:

























































sur:

noun: dog

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:

























































sur:

noun: book

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:

























































sur:

noun: child

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:

























































sur:

noun: apple

cat: pn

sem: pl

fnc:

mdr:

nc:

pc:

prn:





























<

The proplet shell is a pattern with a variable, here α, as the value of the core attribute, here noun.

Content proplets are derived from the proplet shell by replacing the variable with different con-

stants (see <). The proplets happen to be lexical because of their empty continuation attributes

fnc, mdr, nc, and pc as well as their empty book-keeping attribute prn. The proplets happen to

be context proplets because their sur attribute has no value.

As an example of a complex content consider the representation of The big dog likes the

small bird. The small bird likes the big dog. as a(n unordered) set of proplets:

3.2 COMPLEX CONTENT AS A SET OF PROPLETS





























sur:

noun: dog

cat: snp

sem: def sg

fnc: like

mdr: big

nc:

pc:

prn: 1

























































sur:

adj: big

cat: adnv

sem: pad

mdd: dog

mdr:

nc:

pc:

prn: 1

























































sur:

verb: like

cat: #s3 #a decl

sem: pres

arg: dog bird

mdr:

nc: (like 2)

pc:

prn: 1

























































sur:

noun: bird

cat: snp

sem: indef sg

fnc: like

mdr: small

nc:

pc

prn: 1

























































sur:

adj: small

cat: adnv

sem: pad

mdd: bird

mdr:

nc:

pc:

prn: 1

























































sur:

noun: bird

cat: snp

sem: def sg

fnc: like

mdr: small

nc:

pc:

prn: 2

























































sur:

adj: small

cat: adnv

sem: pad

mdd: bird

mdr:

nc:

pc:

prn: 2

























































sur:

verb: like

cat: #s3 #a decl

sem: pres

arg: bird dog

mdr:

nc:

pc: (like 1)

prn: 2

























































sur:

noun: dog

cat: snp

sem: def sg

fnc: like

mdr: big

nc:

pc

prn: 2

























































sur:

adj: big

cat: adnv

sem: pad

mdd: dog

mdr:

nc:

pc:

prn: 2





























7



The content consists of two propositions with the prn values 1 and 2, connected by the nc values

(like 2) of the first and (like 1) of the second verb (extrapropositional coordination).

The functor argument relations of subject/predicate, object\predicate, and modifier|modified

are also coded by the same value in different slots of different proplets, as shown by the diagonal

lines in the following example, which indicate the intrapropositional relations of 3.2:

3.3 GRAPHICAL REPRESENTATION OF A COMPLEX CONTENT

verb: like
fnc: like

prn: 2

adj: small

mdr: small prn: 2 pc: (like 1)
prn: 2

verb: like

nc: (like 2)
prn: 1

arg: dog bird fnc: like

prn: 1
mdr: small prn: 1

adj: smallnoun: bird
mdd: bird

noun: bird
mdd: bird arg: bird dog fnc: like

noun: dog

mdr: big

adj: big
mdd: dog

prn: 2
prn: 2

adj: big
mdd: dog
prn: 1

noun: dog
fnc: like
mdr: big
prn: 1

Modeling the combinatorial aspects of a content as a set of proplets is correct if, and only if, the

relations in the set correspond to the language intuition of the native speakers. For example, if

the human content of the first proposition were the small dog likes the big bird, 3.2 and 3.3

would be wrong.

Next let us turn to the other aspect of an elementary content, namely the semantic core. The

following example shows the single core value square (FoCL 3.3.1) serving in three proplet

shells differing in their core attributes noun, verb, and adj (see <):

3.4 SINGLE CORE VALUE TAKING DIFFERENT PROPLET SHELLS

square =⇒





























sur: square

noun: square

cat: sn

sem: sg

fnc:

mdr:

nc:

pc:

prn:

























































sur: squared

verb: square

cat: n′ a′ v

sem: past

arg:

mdr:

nc:

pc:

prn:

























































sur: square

adj: square

cat: adn

sem: pad

mdd:

mdr:

nc:

pc:

prn:





























<

The first proplet may serve in a content corresponding to Mary picked the square (noun)., the

second in a content corresponding to Mary squared (verb) her account., and the third in a

content corresponding to Mary bought a square (adj) table (CLaTR 6.6.4–6.6.7).

While the combinatorial properties of a proplet shell must correspond to native speaker intu-

itions, the correctness of a core value as an elementary concept may be based on corresponding

behavior in recognition and action. For example, an artificial agent’s concept of shoe may be

considered adequate if it picks out the same object(s) from a collection of different things as a

human would (CLaTR Sects. 8.5, 15.6; NLC Sect. 4.3). Similarly for action: to be successful

an artificial agent must realize elementary contents in the same way as a human would.

8



The procedural grounding of an agent’s semantics requires (i) the hardware of external inter-

faces and a memory, and (ii) the software of concept types and concept tokens. The types must

combine a declarative definition and a procedural implementation. They may be attached by

convention to natural language surfaces to serve as literal meanings (CLaTR 1.4.1, 2.1.1).

In recognition, external interfaces provide raw data which are classified by concept types pro-

vided by memory (NLC Sect. 4.3). In action, blue prints for action provide concept tokens,

which external interfaces realize as raw data (NLC Sect. 4.4). The processing of concepts, as

a kind of elementary content besides pointers (indexicals) and markers (names), constitutes the

third of several clearly defined contacts between DBS and computer science.

4 Database Schema

In DBS, the memory of a talking robot is realized as a database. In computer science, the

structure supporting storage and retrieval is called the database schema. The database used in

DBS, called word bank, is content-addressable8 (Bachman 1973) in that it does not need an

inverted file (1.5) as a separate index. The schema of a word bank may be illustrated as follows:

4.1 ABSTRACT DATABASE SCHEMA OF A WORD BANK

member proplets now front owner values

. . .













att-p1: con-a1

att-p2: con-d2

att-p3: con-f4

att-p4:

prn: prn-con-i

























att-p1: con-a1

att-p2:

att-p3: con-b2

att-p4: con-x4

prn: prn-con-j













att-p1: con-a1

. . .













att-q1: con-b1

att-q2:

att-q3: con-g2

att-q4: con-h4

prn: prn-con-m

























att-q1: con-b1

att-q2: con-a5

att-q3:

att-q4: con-c4

prn: prn-con-n













att-q1: con-b1

. . . . . .

. . .













att-r1: con-z1

att-r2: con-k2

att-r3:

att-rl: con-o4

prn: prn-con-x

























att-r1: con-z1

att-r2: con-c2

att-r3:

att-r4: con-b4

prn: prn-con-y













att-r1: con-z1

This schema resembles the two-dimensional structure of a classic9 network database with a col-

umn of owners and an associated list of members. It differs from a network database, however,

in that the owners are values and the members are items conforming to the data structure of

proplets (2.1) instead of records.

Compared to a network database, a word bank is highly restricted in that the list of member

proplets preceding an owner value must (i) all have the owner value as their core value (no

multiple owners) and (ii) be in the order of arrival, indicated by their position in the token

8The widely used relational databases (RDMS), in contrast, are coordinate-addressable (CLaTR Sect. 4.1).
9Elmasri and Navathe (2010) call a database classic if it is based on the data structure of records.

9



line and their prn value. Also, the owner value and the preceding list of member proplets are

separated by a free slot, called the now front, which serves as the place of data processing.

Incoming proplets provided by recognition are stored at the current now front, thus fixing the

moment of arrival (horizontal order). The correct token line is determined by the alphanumerical

properties of a lexical proplet’s core value (vertical order). The moment of arrival and the core

value completely determine the location of any proplet in a word bank. The method does not

interfere with the semantic relations of structure between proplets because the relations are coded

as proplet-internal addresses, making the concatenated proplets of a content order-free.

The database schema of the abstract word bank 4.1 may be concretely instantiated as follows:

4.2 WORD BANK STORING THE CONTENT 3.2

member proplets now front owner values
















adj: big

cat: adnv

sem: pad

mdd: dog

. . .

prn: 1

































adj: big

cat: adnv

sem: pad

mdd: dog

. . .

prn: 2

















big





















noun: bird

cat: snp

sem: indef sg

fnc: like

mdr: small

. . .

prn: 1









































noun: bird

cat: snp

sem: def sg

fnc: like

mdr: small

. . .

prn: 2





















bird





















noun: dog

cat: snp

sem: def sg

fnc: like

mdr: big

. . .

prn: 1









































noun: dog

cat: snp

sem: def sg

fnc: like

mdr: big

. . .

prn: 2





















dog

























verb: like

cat: #s3 #a decl

sem: pres

arg: dog bird

mdr:

nc: (like 2)

pc:

prn: 1

















































verb: like

cat: #s3 #a decl

sem: pres

arg: bird dog

mdr:

nc:

pc: (like 1)

prn: 2

























like

















adj: small

cat: adnv

sem: pad

mdd: bird

. . .

prn: 1

































adj: small

cat: adnv

sem: pad

mdd: bird

. . .

prn: 2

















small

10



The word bank contains the five token lines for the owner values big, bird, dog, like and small.

Within each token line, the arrival order is indicated by position and the prn value.

The extrapropositional coordination between the two propositions of the content 3.2 is coded

by the features [nc: (like 2)] in the first verb proplet and [pc: (like 1)] in the second. Extrapropo-

sitional address values consist of (i) a core value, e.g. like, and a prn value, e.g. 1, surrounded

by parentheses, e.g. (like 1). Called long address, they serve as the primary key of a word bank.

An intrapropositional address value, in contrast, is written as the core value only and is called

a short address. For example, the adj proplets small in 3.2 and 4.2 have the continuation feature

[mdd: bird] with the attribute mdd (modified) and the short address value bird, just as the noun

proplets bird have the continuation feature [mdr: small] with the attribute mdr (modifier) and

the short address value small. Omitting the prn value of an intrapropositional address is possible

because it is the same as that of the proplet containing the address; therefore specifying the prn

value once more in an intrapropositional address would be redundant.

The input to recognition operations is restricted to the proplets at the current now front. A

recognition operation applies whenever the two proplet patterns of its antecedent (5.3) find

matching input (self-organization, Kohonen 1988). In DBS, concatenation is limited to the se-

mantic relations of structure in natural language, i.e. functor-argument and coordination, intra-

and extrapropositionally (NLC Chaps. 6–9).10

Proplets which have ceased to be candidates for further concatenation are regularly cleared

from the now front by moving the owner values of the affected token lines one step to the

right, leaving the current non-candidates behind as member proplets (loom-like clearance).11

Once a content has been left behind as a set of concatenated member proplets, it may not be

modified. However, it may be accessed by pattern or address, read, and copied to the now front

for participating in current processing whenever needed. Accordingly, data correction is limited

to diary-like comments at the now front, referring back to stored content never to be touched.

In the think mode, content is activated selectively by navigating along the semantic relations

of structure between member proplets, using a continuation address of the current proplet as the

primary key for finding a successor (5.5). For example, the navigation from the first dog proplet

to big in 4.2 uses (i) the feature [mdr: big] to find the token line of big and (ii) the feature

[prn: 1] to find the item in question within the token line. The database schema of a word bank

constitutes the fourth of several clearly defined contacts between DBS and computer science.

5 Algorithm

The algorithm of DBS is defined in terms of operations which consist of an antecedent pattern

and a consequent pattern (TCS). Their application is content-driven in that the currently avail-

able proplets activate all operations which match the pattern(s) of their antecedent. Binding

constants of the input proplet(s) to corresponding variables in the antecedent pattern(s), enables

10The semantic relations of structure differ from the semantic relations of meaning, such as hypernymy and

antonymy, and of content, such as cause-and-effect (CLaTR Sect. 5.3), which are handled by inferences instead

of concatenation.
11Equivalently, the now front may be cleared by moving the member proplets one step to the left, as in a push down

automaton. If proplets with the same core value are repeated in a proposition, as in slept and slept and slept,

the current now front may store more than one proplet in a given token line (CLaTR 13.5.3).

11



the consequent containing the same variables, but in different slots, to derive an output.12 Con-

sider the application of an abstract operation to an abstract input content, deriving an abstract

output content by means of its consequent:

5.1 ABSTRACT FORMAT OF AN INTRAPROPOSITIONAL RECOGNITION OPERATION

Name of operation

pattern

level









att-a1: α

att-a2: con-a2

att-a3:

prn: K

















att-b1: β

att-b2: con-b2

att-a3:

prn:









<

⇒









att-a1: α

att-a2: con-a2

att-a3: β
prn: K

















att-b1: β

att-b2: con-b2

att-b3: α
prn: K







≪

variable restrictions

⇑ ⇓

content

level













att-a1: con-a1

att-a2: con-a2

att-a3:

att-a4: con-a4

prn: prn-con

























att-b1: con-b1

att-b2: con-b2

att-b3:

att-b4: con-b4

prn:













<












att-a1: con-a1

att-a2: con-a2

att-a3: con-b1

att-a4: cona-4

prn: prn-con

























att-b1: con-b1

att-b2: con-b2

att-b3: con-a1

att-b4: con-b4

prn: prn-con













≪

antecedent consequent

By binding the abstract constants con-a1 and con-b1 to the corresponding operation variables

α and β, respectively (see <), and by showing these same variables in the slots att-a3 and att-b3

of the operation consequent, the associated constants are copied into the corresponding slots of

the content level (see ≪),13 thus establishing a binary semantic relation of structure between the

two output proplets.

For an operation to be successful on an input, the following conditions must be fulfilled:

5.2 CONDITIONS ON PATTERN MATCHING BETWEEN OPERATION AND INPUT

1. The attributes of an operation pattern must be a sublist or equal to the attributes of the

matching input and output. For example, in 5.1 the attributes att-a1–att-3 in the first

antecedent pattern are a sublist of att-a1–att-4 in the first input proplet at the content

level.

2. Constant values of an antecedent pattern must have identical counterparts in the matching

content. For example, the constant value con-a2 in the att-a2 slot of the first antecedent

pattern has a counterpart in the corresponding slot of the associated input proplet.

As a concrete instantiation of the abstract operation 5.1 consider the following hear mode

operation NOM+FV as it establishes the subject/predicate concatenation in Julia knows John.

(NLC 11.6.1):

12The content-driven algorithm of DBS is in contradistinction to the substitution-based algorithms in the paradigm

of phrase structure, e.g. the production rules of context-free BNF.
13The < and ≪ markers are used solely for guiding the human readers’ attention.

12



5.3 HEAR MODE OPERATION ADDING PREDICATE TO SUBJECT

NOM+FV

pattern

level









noun: α

cat: NP

fnc:

prn: K

















verb: β

cat: NP′ X VT

arg:

prn:









<

⇒









noun: α

cat: NP

fnc: β
prn: K

















verb: β

cat: #NP′ X VT

arg: α
prn: K







≪

NP ε {snp, pnp , s3, p3}; NP′ ε {n′,ns3′, n-s3′}.

If NP ε {s3, snp} then NP′ ε {ns3′, n′}; otherwise, NP′ ε {n-s3′, n′}.

⇑ ⇓

content

level





















sur: Julia
noun: Julia

cat: snp

sem: nm f

fnc:

. . .

prn: 1









































sur: knows
verb: know

cat: ns3′ a′ v

sem: pres

arg:

. . .

prn:





















<





















sur:

noun: Julia

cat: snp

sem: nm f

fnc: know

. . .

prn: 1









































sur:

verb: know

cat: #ns3′ a′ v

sem: pres

arg: Julia

. . .

prn: 1





















≪

In the antecedent, the constants Julia and know are bound to the variables α and β, respectively

(see <). In the consequent, the slots of arg and fnc, respectively, are filled with these values

(see ≪). Because the operation is run via the core values of the content proplets, it may be

applied to language proplets (non-empty sur slot) and context proplets (empty sur slot) alike.

The restrictions on the variables NP (nominal valency filler) and NP′ (nominal valency position),

positioned below the operation at the matching frontier, however, are language-dependent and

handle the agreement between the subject and the predicate in English.

The following four kinds of cross-copying may be distinguished in DBS (CLaTR 16.6.7):

5.4 FOUR KINDS OF CROSS-COPYING

core: 

prn:
cont.:

α core: 

prn:
cont.:

β

prn: prn:

sur: sur: 
core: core:α

β

(ii) flat duplex 

core: 

prn:
cont.:

α core: 

prn:
cont.:

β

(iii) slant simplex

core: 

prn:

α core: 

prn:

β
cat: cat: X

(i) slant duplex (iv) flat simplex 

The cross-copying in 5.3 is of the kind ‘slant duplex.’ It is slant, because core values bound in

the antecedent are copied into continuation slots of the consequent. It is duplex, because the

copying is from the first proplet to the second and from the second proplet to the first.

The matching and binding used in DBS operations differs from the computational pattern

matching in text processing. First, the two approaches are based on different data structures:

the algorithms discussed in Sect. 1 use numbered elementary items such as letters in a text,

whereas DBS uses non-recursive feature structures with ordered attributes (proplets). Second,

DBS distinguishes between pattern proplets and content proplets; a pattern proplet must have at

least one variable as a value, while a content proplet must not have any variable value at all. No

such distinction arises in the string search mechanisms presented in Sect. 1.

A variant of the abstract operation format shown in 5.1 is used for navigating along the se-

mantic relations of structure between stored proplets. As shown by the following example of

a subject/predicate traversal, think mode operations consist of a single antecedent and a single

13



consequent pattern (NLC 12.3.3, 14.2.11, 14.3.4, 14.4.4).

5.5 THINK MODE NAVIGATION FROM SUBJECT TO PREDICATE

N/V

content

level









noun: β

fnc: α

mdr: Z

prn: K









⇒





verb: α

arg: #β Y

prn: K



 #-mark α in the fnc slot of proplet β

where Z is #-mar ked or NIL

⇑ ⇓

language

level

























noun: car

cat: snp

sem: def sg

fnc: hit

mdr: #heavy&

nc:

pc:

prn: 4

















































verb: hit

cat: #n′ #a′ decl

sem: past

arg: #car tree

mdr:

nc: (speed 5)

pc:

prn: 4

























The antecedent uses the continuation feature [fnc: hit] and the prn feature [prn: 4] of the input

proplet car to navigate intrapropositionally to and selectively activate the next proplet hit. The

condition where Z is #-marked or NIL prevents the operation from applying if a determiner

is followed by an untraversed modifier. The instruction #-mark α in the fnc slot of proplet β

cancels a continuation value and prevents reappliation of the operation, as in a loop.

A second kind of think mode operation besides selective activation are the inferences, defined

to derive new content from activated content (NLC Sect. 5.3; CLaTR Sects. 5.2, 6.5, 10.3, 13.5).

Both kinds may be turned into speak mode operations by embedding a language-dependent

lexicalization rule (NLC 12.4.3, 12.5.2, 12.6.1) into the sur slot of the consequent, as shown by

the following variant of 5.5:

5.6 SPEAK MODE NAVIGATION REALIZING A PREDICATE

N/V

content

level









noun: β

fnc: α
mdr: Z

prn: K









⇒









sur: lexverb(α̂)

verb: α
arg: #β Y

prn: K









#-mark α in the fnc slot of proplet β

where Z is #-mar ked or NIL

⇑ ⇓

language

level





























sur:

noun: car

cat: snp

sem: def sg

fnc: hit

mdr: #heavy&

nc:

pc:

prn: 4

























































sur: hit
verb: hit

cat: #n′ #a′ decl

sem: past

arg: #car tree

mdr:

nc: (speed 5)

pc:

prn: 4





























14



The definition of operations for concatenation in the hear mode, for selective activation and

inferencing in the think mode, and for the realization of language-dependent surfaces in the

speak mode, on the one hand, and the abstract operation schema 5.1, on the other, constitute the

fifth of several clearly defined contacts between DBS and computer science.

6 Functional Flow

For testing and debugging, the derivation steps of the DBS software components may be run

separately. For example, a list of unanalyzed word form surfaces, ordered according to fre-

quency, alphabetically, as they occur in a text, or in linguistic examples, may be used as input to

(i) automatic word form recognition, resulting in a list of lexical proplets as output.

In a next separate step, any such list of lexical proplets may be used as input to (ii) syntactic-

semantic parsing, resulting in a content or a list of contents. Then the order-free, concatenated

proplets of a content may be (iii) sorted into a database, and the stored proplets may be processed

(iv) for reasoning and (v) for the derivation of blue prints for action.

As part of the DBS communication cycle, in contrast, these steps must be integrated to work

incrementally. In the agent’s hear mode, the (i) input of a single next word form surface is

followed by (ii) lexical lookup, (iii) storage of the resulting proplet in the appropriate token line

at the current now front, and (iv) concatenation with other proplets currently available at the now

front. This part of the cycle is repeated as long as a next input surface is provided. The only

way to interrupt the procedure before reaching the end of the input chain are (a) an unrecognized

word form, (b) ungrammatical input, or (c) an event distracting the agent’s attention.

Thus, the proplets of a complex content are not sorted into the word bank in a separate phase,

for example, after reaching the end of a sentence. Instead, automatic word form recognition

stores each lexical proplet directly in what will be its final storage position when it (i) has been

concatenated and (ii) is left behind as a member proplet (4.2) by a now front clearance. Con-

catenation is integrated into recognition in that a newly arrived proplet activates all operations

which match it with their second antecedent pattern (5.3). An activated operation applies if it

finds a proplet at the now front matching its first antecedent pattern. By binding variables in the

antecedent to corresponding constants in the input, the consequent derives the output.

Similarly in the speak mode part of the DBS communication cycle. It is based on language-

dependent lexicalization rules which are inserted into the sur slot of the goal pattern of a think

mode operation. As the think mode (i) navigates along the semantic relations between proplets

(selective activation) or (ii) derives new content by means of inferences, the lexicalization rules

take the single goal proplet of each step as input and derive zero, one, or more unanalyzed

language-dependent surface(s) as output (NLC Sects. 12.4–12.6, Chap. 14). In short, the lexi-

calization rules of automatic word form production do not apply to a sequence of concatenated

proplets, but are integrated into each step of the think mode operations (5.6).

The combination of (i) restricting syntactic-semantic concatenation to the proplets currently

available at the now front and (ii) reopening filled now front slots in regular intervals by moving

the affected owner values one step to the right (loom-like clearance) provides a simple, effective

form of self-organization. The now front proplets left behind as member proplets are those

which have ceased to be candidates for further concatenation. Member proplets may never be

15



changed, though they may be activated, read, and referred to by address (CLaTR Sect. 13.3;

NLC Sect. 11.2).

Graphically, the functional flow of the communication cycle through the agent’s cognitive

components may be shown as follows (CLaTR 14.3.2):

6.1 COMPONENTS AND FUNCTIONAL FLOW OF A DBS SYSTEM

t n

now
front

t n+1

now
front

member
proplets

owner
values

I/
O

 c
om

po
ne

nt

8 2

6 65

3

7

5

coactivation
4

interpretation, navigation, inferencing, production   

cognitive agent

rule component

external reality

1

9

1 = external recognition

2 = internal recognition

3 = input to word_bank

4 = coactivation

5 = now_front/operation interaction

6 = operation/now_front interaction

7 = output of word_bank

8 = internal action

9 = external action

The general I/O component for external and internal recognition and action shows unified input-

output channels for the language and the context level (NLC 2.4.1): it includes automatic word

form recognition and realization, as well as their nonlanguage counterparts (CLaTR Sect. 8).

Input to the I/O component is the raw data from external (1) and internal (2) recognition, while

the internal output of the I/O component are unconnected (lexical) proplets which are written to

the current now front (3). The first such proplet is used as the sentence start and the second as a

next word. If they match the input pattern of an operation (5), they are concatenated (6) by the

output pattern (5.3), resulting in a new sentence start. After receiving a new next word from the

I/O component (3) this incremental procedure is continued.

The interpretation of new data is complemented by deriving blueprints for action based on

inferencing (NLC Sects. 5.3, 5.4; CLaTR Sects. 5.2, 5.3, 13.5, 16.6). Inferences resemble

the other operations of DBS in that they are pattern-based and consist of an antecedent and a

consequent. Stored in the rule component, inferences take (i) current content or (ii) correspond-

ing older content (4) coactivated by current content (CLaTR Sect. 5.4) as input. The output of

inferencing is written to the now front (6). The blueprint for action most likely to maintain or

regain the agent’s state of balance (CLaTR Sect. 5.1) may be passed to the I/O component (7)

for internal (8) or external (9) realization. An example of internal action is continued reasoning.

In 6.1, the now front at moment tn shows the interpretation of an input, while the now front

at moment tn+1 shows the application of an inference deriving a blue print for action. The right

hand side of a current now front is delineated by the column of owner values; the left hand side

fades into the permanent sediment of member proplets.

The continuous coactivation of stored content by current content at the now front requires

16



massive, multiple search in real time. The quality of individual search operations depends on

(i) the speed of the retrieval mechanism and (ii) sufficient expressive power enabling queries to

retrieve content at the appropriate level of detail. In DBS, speed is provided by the database

schema of a content-addressable word bank and the use of pointers. Expressive power is pro-

vided by query patterns which use the same semantic relations (CLaTR 3.2.3, 3.2.6) and some

of the same constant values (CLaTR 4.2.2) as the content proplets searched for.

In summary, the now front is stationary for the agent, but the data of recognition and action

move continuously through it in time. When a now front slot is filled, it is reopened by moving

the owner value of the affected token line one step to the right. In this way, the now front is

cleared for new data and the deprecated data are left behind as member proplets.

Even though the components listed in 6.1 originated in the design of a talking robot, they are

completely general computationally in that the choice of attributes and values in the data structure

of proplets (Sect. 2) is free and may be chosen as needed for any desired application taking

time-linear input and producing time-linear output. Regarding the database schema, the order

of token lines (column of owner values) is determined by the alphanumerical properties of the

core values, regardless of the application. The temporal order of arrival (horizontal token lines)

is provided by the interaction of the system with its environment. This abstract theoretical na-

ture of the components and the functional flow from input to output constitute a sixth of several

clearly defined interfaces between linguistics and computer science in DBS.

7 Conclusion

Database semantics (DBS) approaches agent-based computational linguistics as the project of

designing and building a talking robot. This ensures basic functional completeness from the

outset, while completeness of data coverage is approximated by incremental upscaling. Auto-

matic testing on relevant data provides a method of (i) verification, which is essential for (ii)

permanent correction and (iii) systematic extension. For practical use, the software may serve a

multitude of applications in human-machine communication.

The construction of DBS began with the NEWCAT parser, written in LISP and developed

on Xerox Dandelion and Dandetiger workstations.14 Next, an algebraic definition was distilled

from the software.15 Restricted to the constructs of set theory, an algebraic definition satisfies

the mathematical requirements. For computation, however, the abstract description of the overall

system also requires a declarative specification which defines the external interfaces, the data

structure, the algorithm, the database schema, and the functional flow from input to output.

In addition to these computational requirements, the declarative specification of a talking robot

must cover the cognitive aspect. From a linguistic point of view, the latter includes the definition

of content; the semantic relations of functor-argument structure and coordination; the elemen-

tary, phrasal, and clausal levels of grammatical complexity; many intrapropositional construc-

tions such as infinitival subjects and objects; subject, predicate, and object gapping; phrasal noun

14Thanks to Stanley Peters and the CSLI Stanford (1984–1986) for making programming of the first left-associative

parser possible (CLaTR Chap. 12).
15Thanks to Dana Scott and Stuart Shieber, who at different times and places helped in formulating the algebraic

definition for LA grammar, published in CoL (1989) and TCS (1992).

17



and verb constructions; unbounded dependencies; sentential and verbal moods, etc. These have

been are left aside here.16 Instead, this paper confines itself to the computational aspects of the

declarative specification, which serve as the foundation of the linguistic constructs and empirical

analyses in DBS.

References

de la Briandais, R. (1959) ”File Searching Using Variable Length Keys,” Proc. Western Joint

Computer Conf. 15, 295–298

Bachman, C.W. (1973) “The programmer as navigator,” 1973 ACM Turing Award Lecture,

Comm. ACM, Vol. 16.11:653–658

Carpenter, B. (1992) The Logic of Typed Feature Structures, Cambridge: CUP

CLaTR = Hausser, R. (2011) Computational Linguistics and Talking Robots – Processing Con-

tent in Database Semantics, Springer (preprint 2nd ed. available online at lagrammar.net)

CoL = Hausser, R. (1989) Computation of Language, soft cover reprint 2013, Springer

Elmasri, R., and S.B. Navathe (2010) Fundamentals of Database Systems, 6th ed.. Redwood

City, CA: Benjamin-Cummings

Flouri, T. (2012) Pattern matching in tree structures, Dept of Theoretical Computer Science,

Faculty of Information Technology, Czech Technical University in Prague, Ph.D. dissertation

FoCL = Hausser, R. (1999) Foundations of Computational Linguistics, Human-Computer Com-

munication in Natural Language, 3rd ed. 2013, Springer

Fredkin, E. (1960) “Trie Memory,” Commun. ACM Vol. 3.9:490–499

Kohonen, T. (1988) Self-Organization and Associative Memory, 2nd ed., Springer

Knuth, D. E., J. H. Morris, and V. R. Pratt (1977) “Fast Pattern Matching in Strings,” SIAM

Journal of Computing Vol. 6.2:323–350

NEWCAT = Hausser, R. (1986) NEWCAT: Parsing Natural Language Using Left-Associative

Grammar, LNCS 231, Springer

NLC = Hausser, R. (2006) A Computational Model of Natural Language Communication –

Interpretation, Inference, and Production in Database Semantics, Springer (preprint 2nd ed.

available online at lagrammar.net)

Peirce, C.S. Collected Papers. C. Hartshorne and P. Weiss (eds.), Cambridge, MA: Harvard

Univ. Press. 1931–1935

TCS = Hausser, R. (1992) “Complexity in left-associative grammar,” Theoretical Computer

Science, Vol. 106.2:283–308

Zobel, J., and A. Moffat (2006) “Inverted Files for Text Search Engines,” ACM Computing

Surveys, Vol. 38.2:1–56

16For detailed linguistic analyses mostly of English see NLC and CLaTR.

18


	String Search
	Turning natural language surfaces into a numbered list
	Abstract example of the KMP algorithm
	PS tree representing Julia knows John. John knows Julia.
	Transforming the tree 1.3 into a numbered list
	Inverted file for the English sentence in 1.1
	Example of a DBS trie structure storing young and est

	Data Structure
	Abstract example of a proplet as a data structure
	The six main kinds of proplets illustrated for German
	Four proplet variants resulting from two dichotomies

	Content
	Single proplet shell taking different core values
	Complex content as a set of proplets
	Graphical representation of a complex content
	Single core value taking different proplet shells

	Database Schema
	Abstract database schema of a word bank
	Word bank storing the content 3.2

	Algorithm
	Abstract format of an intrapropositional recognition operation
	Conditions on pattern matching between operation and input
	Hear mode operation adding predicate to subject
	Four kinds of cross-copying
	Think mode navigation from subject to predicate
	Speak mode navigation realizing a predicate

	Functional Flow
	Components and functional flow of a DBS system

	Conclusion

