
Inferencing in Database Semantics

Roland HAUSSER
Abteilung Computerlinguistik, Universität Erlangen-Nürnberg (CLUE)

Bismarckstr. 6, 91054 Erlangen, Germany
rrh@linguistik.uni-erlangen.de

Abstract. As a computational model of natural language communication, Database
Semantics1 (DBS) includes a hearer mode and a speaker mode. For the content to
be mapped into language expressions, the speaker mode requires an autonomous
control. The control is driven by the overall task of maintaining the agent in a state
of balance by connecting the interfaces for recognition with those for action.

This paper proposes to realize the principle of balance by sequences of inferences
which respond to a deviation from the agent’s balance (trigger situation) with a
suitable blueprint for action (countermeasure). The control system is evaluated in
terms of the agent’s relative success in comparison other agents and the absolute
success in terms of survival, including the adaptation to new situations (learning).

From a software engineering point of view, the central question of an au-
tonomous control is how to structure the content in the agent’s memory so that the
agent’s cognition can precisely select what is relevant andhelpful to remedy a cur-
rent imbalance in real time. Our solution is based on the content-addressable mem-
ory of a Word Bank, the data structure of proplets defined as non-recursive feature
structures, and the time-linear algorithm of Left-Associative grammar.

Introduction

Designing an autonomous control as a software system requires a functional principle to
drive it. Following earlier work such as [Bernard 1865] and [Wiener 1948], DBS control
is based on the principle ofbalance, i.e., it is designed to maintain the agent in a steady
state (equilibrium, homeostasis) relative to a continuously changing external and internal
environment, short-, mid-, and long-term.2 In this way, changes of the environment are
utilized as the main motor activating the agent’s cognitiveoperations.

The balance principle guides behavior towards daily survival in the agent’s ecologi-
cal niche. Behavior driven by instinct and by human desires not directly related to sur-
vival, such as power, love, belonging, freedom, and fun, mayalso be subsumed under the
balance principle by treating them as part of the internal environment – like hunger.

The agent’s balancing operations provide the foundation for a computational recon-
struction ofintentionin DBS, just as the agent’s recognition and action procedures pro-
vide the foundation for a computational reconstruction ofconceptsand of meanings

1For an introduction to DBS see [NLC’06]. For a concise summery see [Hausser 2009a].
2Though conceptually much different from previous and current approaches to autonomous control, our

mechanism is closer in spirit to circular causal systems in ecology [Hutchinson 1948] than to the more recent
systems of control with a stratified architecture structured into the levels of organization, coordination, and
execution [Antsaklis and Passino 1993].

(cf. [AIJ’01]). This differs from [Grice 1965], who bases his notion of meaning on an el-
ementary (undefined, atomic) notion of intention – which is unsuitable for computation.3

An autonomous control maintaining a balance by relating recognition to the evaluated
outcome of possible reactions is decentralized,4 in line with [Brooks 1985].

1. Inferences of Database Semantics

Maintaining the agent in a state of balance is based on three kinds of DBS inference,
called R(eactor), D(eductor), and E(ffector) inferences.5 R inferences are initiated by
a trigger provided (i) by the agent’s current external or internal recognition or (ii) by
currently activated memories (subactivation, cf. Sect. 6). D and E inferences, in contrast,
are initiated by other already active inferences, resulting in chaining. As a first, simple
method of chaining, let us assume that the consequent of inferencen must equal the
antecedent of inferencen+1.

R(eactor) inferences provide a response to actual or potential deviations from the
agent’s balance (cf. 1.1, 4.1, 12.1). A given trigger automatically initiates exactly those
R inferences which contain the trigger concept, e.g.,hotor hungry, in their antecedent.

D(eductor) inferences establish semantic relations of content, and are illustrated by
summarizing (cf. 3.2), downward traversal (cf. 10.1), and upward traversal (cf. 10.4).
Other kinds of D inferences arepreconditionandcause and effect. Triggered initially by
an R inference, a D inference may activate another D inference or an E inference.

E(ffector) inferences provide blueprints for the agent’s action components.6 Because
E inferences connect central cognition with peripheral cognition, their definition has to
be hand-in-glove with the robotic hardware they are intended to control.

The interaction of reactor, deductor, and effector inferences is illustrated by the follow-
ing chain, using English rather than the formal data structure of proplets7 for simplicity:

1.1. CHAINING R, D, AND E INFERENCES

1. R:β is hungrycm β eats food.
2. D: β eats foodpre β gets food.
3. D: β gets food⇓ β getsα, whereα ǫ {apple, pear, salad, steak}.
4. E:β getsα execβ locatesα atγ.
5. E:β locatesα atγ execβ takesα.
6. E:β takesα execβ eatsα.
7. D: β eatsα ⇑ β eats food.

Step 1 is an R inference with the connectivecm (for countermeasure) and triggered by a
sensation of hunger. Step 2 is a D inference with the connective pre (for precondition),

3Cf. [FoCL’99], Sect. 4.5, Example II.
4The cooperative behavior of social animals, e.g., ants in a colony, may also be described in terms of balance.
5This terminology is intended to distinguish DBS inferencesfrom the inferences of symbolic logic. For

example, while a deductive inference like modus ponens is based on form, the deductor inferences of DBS take
content into account.

6In robotics, effectors range from legs and wheels to arms andfingers. The E inferences of DBS should also
include gaze control.

7Proplets are defined as non-recursive (flat) feature structures and serve as the basic elements of propositions.
Like the cell in biology, the proplet is a fundamental unit ofstructure, function, and organization in DBS.

while step 3 is the D inference for downward traversal with the connective⇓ (cf. 10.1).
Steps 4, 5, and 6 are E inferences with the connectiveexec(for execute).

Step 4 may be tried iteratively for the instantiations of food provided by the consequent
of step 3 (see the restriction on the variableα). If the agent cannot locate an apple, for
example, it tries next to locate a pear, etc. Individual foodpreferences of the agent may
be expressed by the order of the elements in the variable restriction.

Step 7 is based on the D inference for upward traversal with the connective⇑ (cf. 10.4).
This step is called thecompletionof the chain because the consequent of the inference
equals the consequent of step 1. The completion indicates the successful execution of
the countermeasure to the imbalance indicated by the antecedent of the initial reactor
inference.

2. Coreference-by-Address

The implementation of DBS inferences depends on the DBS memory structure. Called
Word Bank, it is content-addressable8 in that it does not require a separate index (inverted
file) for the storage and retrieval of proplets. A content-addressable memory is especially
suitable for fixed content, i.e., content is written once andnever changed. This provides a
major speed advantage over the more widely used coordinate-addressable memory (as in
a relational database) because internal access may be basedon pointers enabling direct
access to data.

In DBS, the requirement of fixed content is accommodated by adding content instead
of revising it, and by connecting the new content to the old bymeans of pointers. Con-
sider, for example, a cognitive agent observing at moment ti thatJulia is sleepingand at
tj thatJulia is awake, referring to the same person. Instead of representing thischange
by revising the first proposition into the second,9 the second proposition is added as new
content, leaving the first proposition unaltered:

2.1. COREFERENTIAL COORDINATION IN AWORD BANK STORING PROPLETS

member proplets owner proplets

. . .

[

noun: Julia
fnc: sleep
prn: 675

]

. . .

[

noun: (Julia 675)
fnc: wake
prn: 702

]

. . .
[

core: Julia
]

. . .

.

[

verb: wake
arg: (Julia 675)
prn: 702

]

. . .
[

core: wake
]

. . .

. . .

[

verb: sleep
arg: Julia
prn: 675

]

.
[

core: sleep
]

In a proplet, the part-of-speech attribute, e.g.,noun or verb, is called the core attribute
and its value is called the core value. A Word Bank stores proplets with equivalent core
values in the same token line in the order of their arrival. The occurrence ofJulia in the

8See [Chisvin and Duckworth 1992] for an overview.
9A more application-oriented example would befuel level highat ti andfuel level lowat tj .

second proposition is represented by a proplet with a core attribute containing an address
value, i.e.,[noun: (Julia 675)], instead of a regular core value, e.g.,[noun: Julia].

Coreference-by-address enables a given proplet to code as many semantic relations to
other proplets as needed. For example, the proplets representing Julia in 2.1 have the
fnc valuesleep in proposition 675, butwake in proposition 702. The most recent (and
thus most up-to-date) content relating to the original proplet is found by searching the
relevant token line from right to left, i.e., in the anti-temporal direction.

Coreference-by-address combines with the semantic relations of functor-argument and
coordination structure, as in the following example:

2.2. COREFERENCE-BY-ADDRESS CONNECTING NEW TO OLD CONTENT

[

verb: sleep
arg: Julia
prn: 675

]

1
↔

[

noun: Julia
fnc: sleep
prn: 675

]

2
←

[

noun: (Julia 675)
fnc: wake
prn: 702

]

3
↔

[

verb: wake
arg: (Julia 675)
prn: 702

]

The connections 1 and 3 are intrapropositional and based on the functor-argument re-
lations betweenJulia andsleep, andJulia andwake, respectively. Connection 2 is ex-
trapropositional and based on the coreference between the pointer proplet of proposition
702 and the originalJulia proplet of proposition 675.10 One way to realize 2.2 in English
would beJulia was asleep. Now she is awake.

3. Inference for Creating Summaries

Coreference-by-address allows not only (i) to revise the fixed information in a content-
addressable memory by extending it, as in 2.1, but also (ii) to derive new content from
stored content by means of inferencing. One kind of DBS inference is condensing content
into a meaningful summary. As an example, consider a short text, derived in detail in
Chapts. 13 (hearer mode) and 14 (speaker mode) of [NLC’06]:

The heavy old car hit a beautiful tree. The car had been speeding. A farmer gave the driver a
lift.

A reasonable summary of this content would becar accident. This summary may be
represented in the agent’s Word Bank as follows:

3.1. RELATING SUMMARY TO TEXT

member proplets owner proplets
. . .

[

noun: accident
mdr: (car 1)
prn: 67

]

. . .
[

core: accident
]

. . .

. . .

[

noun: car
fnc: hit
prn: 1

][

noun: (car 1)
fnc: speed
prn: 2

]

. . .

[

noun: (car 1)
mdd: accident
prn: 67

]

. . .
[

core: car
]

. . .

10In its basic form, coreference-by-address is one-directional, from the pointer proplet to the original. The
inverse direction may be handled by building an additional index. As usual, the proplets in 2.2 are order-free.
During language production, an order is re-introduced by navigating from one proplet to the next.

. . .











verb: hit
arg: car tree
nc: 2 speed
pc:
prn: 1











.
[

core: hit
]

. . .











verb: speed
arg: (car 1)
pc: 1 hit
nc: 3 give
prn: 2











. . .
[

core: speed
]

. . .

Propositions 1 and 2 are connected (i) by adjacency-based coordination coded in the
nc (next conjunct) andpc (previous conjunct) attribute values of their verb proplets hit
and speed, and (ii) by coreferential coordination based on the original car proplet in
proposition 1 and the corresponding pointer proplet in proposition 2.

The summary consists of anothercar pointer proplet and theaccidentproplet, each
with the sameprn value (here67) and related to each other by the modifier-modified re-
lation. The connection between the summary and the originaltext is based on the address
value(car 1), which serves as the core value of the rightmostcar proplet as well as the
mdr (modifier) value of theaccidentproplet.

The summary-creating inference deriving the new content with theprn value67 is
formally defined as the following D(eductor) inference rule, shown with the sample input
and output of 3.1 at the content level:

3.2. SUMMARY-CREATING D INFERENCE

antecedent consequent

rule
level

[

noun:α
fnc: hit
prn: K

] [

verb: hit
arg:α β

prn: K

] [

noun:β
fnc: hit
prn: K

]

⇒

[

noun: (α K)
mdd: accident
prn: K+M

] [

noun: accident
mdr: (α K)
prn: K+M

]

whereα ǫ {car, truck, boat, ship, plane, ...} andβ ǫ {tree, rock, wall, mountain, ...}∪ α

matching and binding

content
level

[

noun: car
fnc: hit
prn: 1

]











verb: hit
arg: car tree
nc: 2 speed
pc:
prn: 1











[

noun: tree
fnc: hit
prn: 1

] [

noun: (car 1)
mdd: accident
prn: 67

] [

noun: accident
mdr: (car 1)
prn: 67

]

input output

The rule level shows two sets of pattern proplets, called theantecedent and the conse-
quent, and connected by the operator⇒. Pattern proplets are defined as proplets with
variables as values, while the proplets at the content leveldo not contain any variables.
The consequent pattern uses the address (or pointer, cf. Sect. 2) value(α K) to relate to
the antecedent and has the newprn valueK+M, with M > 0.

In the rule, the possible values whichα andβ may be bound to during matching are
restricted by the co-domains of these variables: the restricted variableα generalizes the
summary-creating inference to different kinds of accidents, e.g.,car accident, truck ac-
cident,etc., while the restricted variableβ limits the objects to be hit to trees, rocks, etc.,
as well as cars, trucks, etc. Any content represented by the proplet hit with a subject

and an object proplet satisfying the variable restrictionsof α andβ, respectively, will be
automatically (i) summarized as an accident of a certain kind whereby (ii) the summary
is related to the summarized by means of an address value, here (car 1), thus fulfilling
the condition that the data in a content-addressable memorymay not be modified.

By summarizing content into shorter and shorter versions, there emerges a hierarchy
which provides retrieval relations for upward or downward traversal (cf. Sect. 10). An
upward traversal supplies more and more general notions, which may be used by the
agent to access inferences defined at the higher levels. A downward traversal supplies
the agent with more and more concrete instantiations.

4. Horizontal and Vertical Aspects of Applying DBS Inferences

DBS inferences are defined as formal rules which are applied to content in the agent’s
Word Bank by means of pattern matching. As a software operation, such an applica-
tion may be divided into phases which happen to have horizontal and vertical aspects.
The horizontal aspect concerns the relation between the antecedent and the consequent
of an inference and the chaining of inferences. The verticalaspect concerns the rela-
tion between the rule level and the content level, within an inference and in a chain of
inferences.

Consider the formal definition of the first inference in 1.1, applied to a suitable content:

4.1. FORMAL DEFINITION OF THE hungry-eatR(EACTOR) INFERENCE

antecedent consequent

rule
level

[

noun:β
fnc: hungry
prn: K

] [

verb: hungry
arg:β
prn: K

]

cm

[

noun: (β K)
fnc: eat
prn: K+M

] [

verb: eat
arg: (β K) food
prn: K+M

] [

noun: food
fnc: eat
prn: K+M

]

where 0< M < θ

matching and binding

content
level

[

noun: Julia
fnc: hungry
prn: 211

] [

verb: hungry
arg: Julia
prn: 211

] [

noun: (Julia 211)
fnc: eat
prn: 220

][

verb: eat
arg: (Julia 211) food
prn: 220

][

noun: food
fnc: eat
prn: 220

]

The upper boundθ is intended to ensure that the content of the consequent closely fol-
lows the content of the antecedent. Furthermore, the inclusion of the antecedent’s subject
in the consequent by means of the address value (β K) excludes cases in which one agent
is hungry and another one eats food – which would fail as an effective countermeasure.

The rule application starts with the vertical grounding of the antecedent in the trig-
ger situation by matching and binding. Next there is the horizontal relation between the
grounded antecedent and the consequent, which formalizes acountermeasure (cm) con-
nected to the antecedent and its trigger situation. Finally, the patterns of the consequent
vertically derive a new content as a (preliminary) blueprint for action which may hori-
zontally activate another inference, as shown in 1.1.

5. Schema Derivation and Intersection

The sets of connected pattern proplets constituting the antecedent and the consequent
of an inference like 3.2 or 4.1 are each called a DBS schema. Schemata are used in

general for retrieving (visiting, activating) relevant content in a Word Bank. A schema is
derived from a content, represented as a set of proplets, by simultaneously substituting
all occurrences of a constant with a restricted variable. Consider the following example
of a content:

5.1. PROPLETS CODING THE CONTENT OFJulia knows John.

[

noun: Julia
fnc: know
prn: 625

] [

verb: know
arg: Julia John
prn: 625

] [

noun: John
fnc: know
prn: 625

]

This representation characterizes functor-argument structure in that theJulia andJohn
proplets11 specifyknow as the value of theirfnc attributes,12 and theknowproplet spec-
ifies Julia andJohn as the values of itsarg attribute. The content may be turned into a
schema by replacing itsprn value625 with the variableK, restricted to the positive inte-
gers. This schema will select all propositions in a Word Bankwith a content equivalent
to 5.1

The set of proplets matched by a schema is called itsyield. The yield of a schema
relative to a given Word Bank may be controlled precisely by two complementary meth-
ods. One is by the choice and number of constants in a content which are replaced by
restricted variables. For example, the following schema results from replacing the con-
stantsJulia, John, and 625 in content 5.1 with the variablesα, β, and K, respectively:

5.2. POSSIBLE SCHEMA RESULTING FROM5.1

[

noun:α
fnc: know
prn: K

] [

verb: know
arg:α β

prn: K

] [

noun:β
fnc: know
prn: K

]

The yield of this schema are all contents in which someone knows someone. However,
if only John and 625 in content 5.1 are replaced by variables, the resulting schema has a
smaller, more specific yield, namely all contents in which Julia knows someone.

When a schema with several pattern proplets is used as a query, its yield is obtained by
“intersecting” the token lines corresponding to the pattern proplets’ core values (provided
the latter are constants). As an example, consider the schema forhot potato:

5.3. SCHEMA FOR hot potato

[

adj: hot
mdd: potato
prn: K

] [

noun: potato
mdr: hot
prn: K

]

The functor-argument structure of this example (consisting of a modifier and a modi-
fied) is a schema because theprn value is the variableK. Applying the schema to the
corresponding token lines in the following example resultsin two intersections:

11When we refer to a proplet by its core value, we use Italic, e.g., John.
12When we refer to an attribute or a value within a proplet, we use Helvetica, e.g.,fnc or know.

5.4. INTERSECTING TOKEN LINES FORhot AND potato

member proplets owner proplets

. . .

[

adj: hot
mdd: potato
prn: 20

] [

adj: hot
mdd: water
prn: 32

] [

adj: hot
mdd: potato
prn: 55

] [

adj: hot
mdd: day
prn: 79

]

[

core:hot
]

. . .

. . .







noun: potato
fnc: look_for
mdr: hot
prn: 20













noun: potato
fnc: cook
mdr: big
prn: 35













noun: potato
fnc: find
mdr: hot
prn: 55













noun: potato
fnc: eat
mdd: small
prn: 88







[

core:potato
]

The intersections contain the proplets with theprn values20 and55. They are selected
because the pattern proplets of schema 5.3 match onlyhot proplets with themdd (mod-
ified) valuepotato and onlypotatoproplets with themdr (modifier) valuehot.

The other method to control and adjust the yield of a schema isin terms of the re-
strictions on the variables. Restrictions may consist in anexplicit enumeration of what a
variable may be bound to (cf. 3.2). Restrictions may also be specified by constants, like
vehicle or obstacle, which lexically provide similar sets as the enumeration method by
using a thesaurus, an ontology, WordNet, or the like.

The two methods of fine-tuning a DBS schema result in practically 13 perfect recall
and precision. This is crucial for autonomous control because the effective activation of
relevant data is essential for the artificial agent to make good decisions.

6. Subactivation (Selective Attention)

In DBS, the selection of content by means of schemata is complemented by the equally
powerful method of subactivation: the concepts provided byrecognition and inferencing
are used as a continuous stream of triggers which select corresponding data in the Word
Bank. As an example, consider the following subactivation of a token line:

6.1. TRIGGER CONCEPT SUBACTIVATING A CORRESPONDING TOKEN LINE

member proplets owner proplet trigger concept
[

adj: hot
mdd: potato
prn: 20

] [

adj: hot
mdd: water
prn: 32

] [

adj: hot
mdd: potato
prn: 55

] [

adj: hot
mdd: day
prn: 79

]

. . .
[

core: hot
]

⇐ hot

Subactivation is an automatic mechanism of association,14 resulting in a mild form of
selective attention. It works like a dragnet, pulled by the incoming concepts serving as
triggers and accompanying them with corresponding experiences from the agent’s past.

Intuitively, subactivation may be viewed as highlighting an area of content at half
strength, setting it off against the rest of the Word Bank, but such that exceptional evalua-
tions (cf. Sect. 8) are still visible as brighter spots. In this way, the agent will be alerted to
potential threats or opportunities even in current situations which would otherwise seem
innocuous – resulting in virtual triggers for suitable inferences.

13Recall and precision are defined in terms of subjective user satisfaction. Cf. [Salton 1989].
14Like associating a certain place with a happy memory.

The primary subactivation 6.1 may be extended into a secondary and tertiary one by
spreading activation15 [Quillian 1968]. For example, using the semantic relationscoded
by the left-most proplet in 6.1, the following proposition may be subactivated, based on
the continuation andprn valuespotato 20, look_for 20, andJohn 20:

6.2. SECONDARY SUBACTIVATION OF A PROPOSITION

[

noun: John
fnc: look_for
prn: 20

]











verb: look_for
arg: John, potato
pc: cook 19
nc: eat 21
prn: 20

















noun: potato
fnc: look_for
mdr: hot
prn: 20







[

adj: hot
mdd: potato
prn: 20

]

While a secondary subactivation utilizes the intrapropositional relations of functor-
argument and coordination structure (cf. [NLC’06], Chapts. 6 and 8), a tertiary subacti-
vation is based on the corresponding extrapropositional relations (cf. [NLC’06], Chapts.
7 and 9). For example, using thepc (previous conjunct) andnc (next conjunct) values of
the look_forproplet in 6.2, the tertiary subactivation may spread fromJohn looked for
a hot potato to the predecessor and successor propositions with theverb valuescook
andeat, and theprn values19 and21, respectively.

7. Semantic Relations

Subactivation may spread along any semantic relations between proplets. By coding the
semantic relations inside and between propositions solelyas proplet-internal values, pro-
plets become order-free and are therefore suitable for efficient storage and retrieval in the
content-addressable memory of a Word Bank. Subactivation is made especially efficient
by coding the semantic relations as pointers (cf. Sect. 2).

In DBS, the semantic relations are of two kinds, (i) form and (ii) content. The semantic
relations offormare functor-argument and coordination structure, intra- and extrapropo-
sitionally; they are established during recognition and are utilized in the encoding of
blueprints for action. In natural language communication,for example, the semantic rela-
tions of grammatical form are established in the hearer mode(recognition) and encoded
in the speaker mode (action).

The semantic relations ofcontentare exemplified by cause and effect, precondition,
the semantic hierarchies, etc. Content relations have beenused to define associative (or
semantic) networks (cf. [Brachman 1979] for an overview). In DBS, semantic relations
of content are established by inferences.

The topic of semantic relations in general and of content relations in particular is
widely discussed in linguistics, psychology, and philosophy. Content relations in lexi-
cography, for example, are classified in terms ofsynonymy, antonymy, hypernymy, hy-
ponymy, meronymy,andholonymy. In philosophy, content relations are viewed from a
different perspective, described by [Wiener 1948], p. 133,as follows:

According to Locke, this [i.e., the subactivation of ideas,R.H.] occurs according to three prin-
ciples: the principle of contiguity, the principle of similarity, and the principle of cause and

15In fiction, our notion of triggering a spreading subactivation is illustrated by the madeleine experience of
[Proust 1913], which brings back an almost forgotten area ofwhat he calls "l’édifice immense du souvenir."

effect. The third of these is reduced by Locke, and even more definitely by Hume, to nothing
but constant concomitance, and so is subsumed under the first, contiguity.

Formal examples of semantic relations of content in DBS are the summary inference 3.2,
thehungry-eatinference 4.1, and the hierarchy inferences for downward traversal 10.1
and for upward traversal 10.4. DBS inferences serve not onlyto maintain the agent’s
balance, but also code a kind of knowledge which is differentfrom a content like 5.1.

8. Evaluation of Content

If a cognitive agent were to value all subactivated contentsthe same, they would provide
little guidance towards successful behavior – neither absolute in terms of the agent’s
survival nor relative in comparison to other agents. Even the path of daily routine, of
least resistance, or of following some majority is ultimately the result of choices based
on evaluation.

As a general notion, content evaluation has been investigated in philosophy, linguis-
tics, psychology, and neurology. In today’s natural language processing, it has reap-
peared as thesentiment detectionof data mining [Turney 2002]. In modern psychol-
ogy, evaluation is analyzed inemotion theory[Arnold 1993] and inappraisal theory
[Lazarus and Lazarus 1994].

For a software model of control, evaluations are not so much aquestion of how they are
expressed or which of them are universal,16 but how they are assigned internally by indi-
vidual agents. In DBS, evaluations are assigned when new content is read into the agent’s
Word Bank – by recognition or by inference. At their lowest level, recognition-based
evaluations must be integrated into the agent’s hardware (else they would be figments of
imagination). For example,hot andcold require a sensor for temperature.

Evaluations have been classified in terms ofjoy, sadness, fear,or anger, and are ex-
pressed in terms ofgoodvs.bad, truevs.false, excellentvs.poor, virtuousvs.depraved,
bravevs.cowardly, generousvs.cheap, loyal vs. treacherous, desirablevs.undesirable,
acceptablevs. unacceptable, etc. For guiding the autonomous control of a cognitive
agent, DBS uses the features[eval: attract] and[eval: avoid]. They are of a more basic
and more neutral nature, and fit into the data structure of proplets. Their values may be
scalar and may be set between neutral (0) and the extremes asymptotically approaching
-1 or +1.

The overall purpose of DBS evaluation is to record (i) any actual deviation from the
agent’s state of balance, (ii) any impending threat to the agent’s balance, and (iii) any
possibility to secure positive aspects of maintaining the agent’s balance mid- and long-
term. Each is used as a trigger for selecting an inference which provides an appropriate
reaction. For example, if it is too hot (evaluation-based trigger), go to where it is cooler
(inference-based reaction).

9. Adaptation and Learning

The mechanism of deriving and adjusting DBS schemata (cf. Sect. 5) holds at a level of
abstraction which applies to natural and artificial agents alike. Because of the simplicity

16Cf. [Darwin 1872], Chapt. XIV, pp. 351–360.

of this mechanism, artificial agents may be designed like natural agents in that they adjust
automatically over time. Thereby, the following differences between natural and artificial
agents do not stand in the way:

In natural agents, adjusting to a changing environment as well as optimizing come in
two varieties, (i) the biologicaladaptationof a species in which physical abilities and
cognition are co-evolved, and (ii) thelearningof individuals which is mostly limited to
cognition. Adaptation and learning differ also in that theyapply to different ranges of
time and different media of storage (gene memory vs. brain memory).

In artificial agents, in contrast, improvement of the hardware is the work of engineers,
while development of an automatically adjusting cognitionis the work of software de-
signers. Because of this division between hardware and software, the automatic adjust-
ment of artificial agents corresponds more to learning than to adaptation. Fortunately, the
absence of natural inheritance in artificial agents may be easily compensated by copying
the cognition software (including the artificial agent’s experiences and adaptations) from
the current hardware model to the next.

The DBS mechanism underlying adaptation as well as learningis based on (i) deriving
schemata from sets of content proplets17 by replacing constants with variables and on (ii)
adjusting the restrictions of the variables (cf. Sect. 5). This mechanism may be automated
based on the frequency of partially overlapping contents:

9.1. A SET OF CONTENTS WITH PARTIAL OVERLAP

Julia eats an apple
Julia eats a pear
Julia eats a salad
Julia eats a steak

For simplicity, the propositions are presented in English rather than by corresponding
sets of proplets.

Because of their partial overlap, the propositions may be automatically summarized as
the following schema:

9.2. SUMMARIZING THE SET 9.1 WITH A SCHEMA

Julia eatsα, whereα ǫ {apple, pear, salad, steak}

Due to the restriction on the variableα, 9.2 is strictly equivalent to 9.1.
The next step is to replaceα by a concept serving as a hypernym, herefood:

9.3. REPLACING THE RESTRICTED VARIABLE BY A HYPERNYM

Julia eats food, where foodǫ {apple, pear, salad, steak}

This concept may serve as the literal meaning of the wordfood in English,aliment in
French,Nahrung in German, etc. (cf. [Hausser 2009b]).

Implicit in the content of 9.3 is the following semantic hierarchy:

17Content proplets consist of context proplets and language proplets (cf. [NLC’06], Sect. 3.2). Language
proplets consist of unconnected lexical proplets (e.g., [NLC’06], 5.6.1) and the connected proplets of language-
based propositions (e.g., [NLC’06], 3.2.4).

9.4. REPRESENTING THE SEMANTIC HIERARCHY IMPLICIT IN9.3 AS A TREE

apple pear salad steak

food

The automatic derivation of a semantic hierarchy illustrated in 9.1 – 9.3 is empirically
adequate if the resulting class containing the instantiations corresponds to that of the
surrounding humans. For example, if the artificial agent observes humans to habitually
(frequency) eat müsli, the restriction list ofα must be adjusted correspondingly.18 Fur-
thermore, the language surface chosen by the artificial agent for the hypernym concept
(cf. 9.3) must correspond to that of the natural language in use.

10. Hierarchy Inferences

An agent looking for food must know that food is instantiatedby apples, pairs, salad, or
steaks, just as an agent recognizing an apple must know that it can be used as food. In
DBS, this knowledge is implemented in terms of inferences for the downward and the
upward traversal of semantic hierarchies like 9.4.

For example, if Julia is looking for food, the following downward inference will derive
the new content that Julia is looking for an apple, a pear, a salad, or a steak:

10.1. HIERARCHY-INFERENCE FOR DOWNWARD TRAVERSAL

antecedent consequent

rule level

[

noun: food
fnc: β
prn: K

]

⇓

[

noun:α
fnc: (β K)
prn: K+M

]

whereα ǫ {apple, pear, salad, steak}
matching and binding

content level

[

noun: Julia
fnc: look_for
prn: 18

] [

verb: look_for
arg: Julia food
prn: 18

][

noun: food
fnc: look_for
prn: 18

] [

noun:α
verb: (look_for 18)
prn: 25

]

The antecedent consists of a single pattern proplet with thecore valuefood. When this
pattern matches a corresponding proplet at the content level, the consequent derives a
new content containing the following disjunction19 of several proplets with core values
corresponding to the elements of the restriction set ofα:

10.2. OUTPUT DISJUNCTION OF THE DOWNWARD INFERENCE APPLICATION12.1






noun: appleor
fnc: (look_for 18)
nc: pear
prn: 25













noun: pear
pc: apple
nc: salad
prn: 25













noun: salad
pc: pear
nc: steak
prn: 25













noun: steak
pc: salad
nc:
prn: 25







18This method resembles the establishment of inductive inferences in logic, though based on individual
agents.

19See [NLC’06], Chapt. 8, for a detailed discussion of intrapropositional coordination such as conjunction
and disjunction.

The proplets of the output disjunction are concatenated by thepc (for previous conjunct)
andnc (for next conjunct) features, and have the newprn value25. They are related to
the original proposition by the pointer address(look_for 18) serving as thefnc value of
the first disjunct. The output disjunction may be completed automatically into the new
propositionJulia looks_for apple or pear or salad or steak, represented as follows:

10.3. PROPOSITION RESULTING FROM APPLYING DOWNWARD INFERENCE12.1

[

noun: (Julia 18)
fnc: (look_for 18)
prn: 25

] [

verb: (look_for 18)
arg: (Julia 18) appleor
prn: 25

]







noun: appleor
fnc: (look_for 18)
nc: pear
prn: 25













noun: pear
pc: apple
nc: salad
prn: 25













noun: salad
pc: pear
nc: steak
prn: 25













noun: steak
pc: salad
nc:
prn: 25







This new proposition with theprn value25 is derived from the given proposition with
theprn value18 shown at the content level of 10.1, and related to it by pointer values.

The inverse of downward traversal is the upward traversal ofa semantic hierarchy. An
upward inference assigns a hypernym likefoodto concepts likesalador steak. Consider
the following definition with an associated sample input andoutput at the content level:

10.4. HIERARCHY-INFERENCE FOR UPWARD TRAVERSAL

antecedent consequent

rule level α ǫ {apple, pear, salad, steak} &

[

noun:α
fnc: β
prn: K

]

⇑

[

noun: food
fnc: (β k)
prn: K+M

]

matching and binding

content level

[

noun: Julia
fnc: prepare
prn: 23

] [

verb: prepare
arg: Julia salad
prn: 23

] [

noun: salad
fnc: prepare
prn: 23

] [

noun: food
fnc: (prepare 23)
prn: 29

]

Like the downward inference 10.1, the antecedent of the upward inference consists of
a single pattern proplet with the restricted variableα as the core value. Due to the use
of a pointer address as thefnc value of the output (required anyway by the content-
addressable memory of DBS), there is sufficient informationto complete the output pro-
plets into the propositionJulia prepares food, with theprn value29 and pointer pro-
plets forJulia andprepare.

The limited matching used by the upward and downward inferences has the advantage
of generality. The automatic derivation and restriction ofschemata (cf. Sect. 9) directly
controls the automatic adaptation of the hierarchy inferences. They illustrate how DBS is
intended to fulfill the three functions which define an autonomic system: “automatically
configure itself in an environment, optimize its performance using the environment and
mechanisms for performance, and continually adapt to improve performance and heal
itself in a changing environment” [Naphade and Smith 2009].

11. Analogical Models as Blueprints for Action

To obtain a suitable blueprint for an action, the agent may assemble reactor, deductor,
and effector inferences creatively into a new chain – which may or may not turn out to be
successful. Most of the time, however, it will be easier and safer for the agent to re-use
an earlier action sequence, successfully self-performed or observed in others, provided
such an analogical model is available in the agent’s memory.These earlier models are
contained at various levels of detail in the contents subactivated by the initial R inference.

The R inference defined in 4.1, for example, subactivates allcontents matching the
β is hungry schema (antecedent), theβ eats food schema (consequent), as well the
token lines of the inference’s constants, herehungry, eat, and food. By spreading to
secondary and tertiary subactivations (cf. Sect. 6), the initial R inference may subactivate
a large set of contents in the agent’s Word Bank. These serve to illustrate the trigger
situation with a cloud of subactivations (cf. [NLC’06], Sect. 5.6), but their precision is
too low as to provide a specific blueprint for practical, goal-directed action.

In order for a content stored in memory to be useful for resolving the agent’s current
challenge, it must (i) fit the trigger situation as preciselyas possible and (ii) have a posi-
tively evaluated outcome. For this, our method of choice is DBS intersection (cf. Sect. 5).

Assume that the agent is alone in Mary’s house – which serves as a trigger (cf.6.1)
subactivating the token line ofMary in the agent’s Word Bank. Furthermore, the agent is
hungry, which triggers thehungry-eatinference 4.1. The constanteat in the consequent
subactivates the corresponding token line, resulting in intersections between theMary
andeattoken lines such as the following:

11.1. EXAMPLE OF TWO Mary eat INTERSECTIONS

[

noun: (Mary 25)
fnc: eat
prn: 49

]







verb: eat
arg: (Mary 25)apple
pc: take 48
prn: 49







[

noun: (Mary 25)
fnc: eat
prn: 82

]







verb: eat
arg: (Mary 25) müsli
pc: take 81
prn: 82







In other words, the agent remembers Mary once eating an appleand once eating müsli.
The two proplets in each intersection share aprn value, namely 49 and 82, respec-

tively, and are in a grammatical relation, namely functor-argument structure. In both in-
tersections, the verb propleteatprovides two continuations. For example, the verb of the
first intersection provides the continuation valuesapple andtake 48, which may result
in the following secondary and tertiary subactivations (cf. Sect. 6).

11.2. SUBACTIVATION SPREADING FROMMary eatTO Mary take apple.

[

noun: (Mary 25)
fnc: eat
prn: 49

]







verb: eat
arg: (Mary 25)apple
pc: take 48
prn: 49













noun: apple
fnc: eat
eval: attract
prn: 49







[

noun: (Mary 25)
fnc: take
prn: 48

]











verb: take
arg: (Mary 25) apple
nc: eat 49
pc: locate 47
prn: 48











[

noun: apple
fnc: take
prn: 48

]

The anti-temporal order corresponds to the spreading direction of the subactivation.
The apple 49proplet (secondary subactivation) contains theeval attribute with the

valueattract. Assuming that the corresponding subactivation for the second intersection
happens to evaluate themüsli 82proplet aseval: avoid20 (not shown), the agent would
pursue only the tertiary subactivation from the first (and not the second) intersection in
11.1 as a possible candidate for an analogical model for regaining balance.

To get at the information relevant for finding something to eat in Mary’s house, the
subactivation 11.2 may spread further, based on thepc (for previous conjunct) value
locate 47 of thetake 48proplet. In this way, the subactivation of the earlier eating event
may be completed into the following backward sequence of propositions:

11.3. SUBACTIVATED SEQUENCE OF PROPOSITIONS(ANTI -TEMPORAL ORDER)

Mary eat apple [prn: 49]. Mary take apple [prn: 48]. Mary locate apple in blue cup-
board [prn: 47].

The information relevant for the hungry agent is the location from where Mary got the
apple, i.e., the blue cupboard.

If the anti-temporal order is reversed, the propositions in11.3 will match the antecedent
of step 5 in Example 1.1 all the way to the consequent of step 7.This completes the chain
relative to the consequent of the initial R inference 4.1 at the level of content, obviating
steps 1–4 and thus without any assertion that Mary was hungrywhen she ate the apple.21

From the content 11.3 provided by memory via intersection, the agent may obtain an
analogical model by (i) reversing the order and (ii) replacing the valueMary with a
pointer to the agent, represented asmoi:

11.4. RESULTING ANALOGICAL MODEL

execMoi locate apple in blue cupboard [prn: 102]execMoi take apple [prn: 103]
execMoi eat apple [prn: 104]⇑ Moi eat food [prn: 105]

Whether or not these blueprints for the agent’s action components will result in a success-
ful countermeasure depends on whether proposition 102 turns out to hold in the agent’s
current situation or not.

12. Learning by Imitation

The purposeful subactivation of an earlier content in the Word Bank by means of inter-
section provides the agent with an analogical model potentially suitable to remedy its
current imbalance. For example, instead of looking randomly through Mary’s house for
something to eat, the agent will begin with searching for an apple in the blue cupboard.

To implement such a system requires an agent with interfacesfor recognition and ac-
tion of a quality not yet available. Therefore, let us consider a simpler example, namely a
robot loading its battery at one of several loading stationsin its environment. In analogy
to 1.1, this behavior may be controlled by the following chain of inferences:

20The assumed evaluations reflect the agent’s preference of eating apples over eating müsli.
21If the agent were to assume (unnecessarily) that Mary must have been hungry, then this would correspond

to an abductive inference in logic. The point is that observing Mary eating is sufficient for the purpose at hand.

12.1. AUTONOMOUS CONTROL AS A CHAIN OFR-D-E INFERENCES

1. R:β low batterycm β load battery.
2. D: β load batterypre β locate station.
3. D: β locate station⇓ β locateα, whereα ǫ {1, 2, 3, etc. }.
4. E:β locateα execβ attach toα.
5. D: β attach toα ⇑ β attach to station.
6. E:β attach to stationexecβ load battery.

The connectivescm (countermeasure),pre (precondition),⇓ (is instantiated by),⇑ (hy-
pernym), andexec(execute) are as in 1.1. Steps 3 and 5 show a primitive semantic hi-
erarchy, namely the termstation for the instantiations ofα. The consequent of step 6
provides completion.

In terms of current technology, each notion used in this software program, e.g.,lo-
cate, attach, or load, has a rather straightforward procedural counterpart. It is therefore
possible even today to build a real robot in a real environment performing this routine.

Instead of programming the robot’s operations directly, for example in C or Java, let us
use a declarative specification in terms of proplets in a WordBank. In other words, the
robots’ recognitions, e.g.,locate α, are stored in its Word Bank as sets of proplets and
the robot’s actions, e.g.,attach_to α, are controlled by sequences of proplets.

To simulate learning by imitation, let us use two such robots, called A and B. Initially,
each is training in its own environment, whereby A has the loading stations 1 and 2,
and B has the loading stations 3, 4, and 5 – with their respective α variables defined
accordingly. Once the individual loading routines are wellestablished for both, A is put
into the environment of B.

To simplify A’s recognition of loading events by B, let us assume that B emits a signal
every time it is loading and that A can correctly interpret the signal. In order for A to
imitate B, A must follow B, remember the new locations, and adapt A’s definition ofα
to the new environment. The new loading stations may differ in hight, which may cause
different efforts of reach, thus inducing preferences (evaluation).

After following B around, A’s battery is low. This imbalancetriggers step 1 in 12.1.
Being in B’s environment, A subactivates the token line of B in A’s Word Bank, while
the consequent of step 1 subactivates the token line ofload, leading to their intersection
– in analogy to 11.1. Spreading results in secondary and tertiary subactivations:

12.2. SUBACTIVATED SEQUENCE OF PROPOSITIONS(ANTI -TEMPORAL ORDER)

B load battery [prn: 69]. B attach to station 3 [prn: 68]. B locate station 3 [prn: 67].

By reversing the spreading order into the temporal order andby replacing B by A, the
visiting robot obtains the following blueprints for its action components:

12.3. BLUEPRINTS FOR ACTION

A locate station 3 [prn: 87]. A attach to station 3 [prn: 88]. Aload battery [prn: 89].

Except for the replaced subject, these propositions consist of recognition content from
A’s memory. Therefore, their core values are tokens carrying sensory, motor, and con-
ceptual information which is not provided by the types of theinference chain 12.1, but
essential for action blueprints sufficiently detailed to master the situation at hand.

13. Fixed vs. Adaptive Behavior

The behavior of robot A described above is flexible in that it can adapt to different en-
vironments of aknown kind, here two rooms which differ in the number and location of
loading stations. In this example, the artificial agents andtheir artificial environments are
co-designed by the engineers.

A more demanding setup is to take a given natural environmentand to design a robot
able to maintain a balance relative to internal and externalchanges. This requires (i) anal-
ysis of the external environment, (ii) construction of interfaces for the agent’s recognition
of, and action in, the external environment, and (iii) definition of R(eactor), D(eductor),
and E(ffector) inferences for optimal survival.

The ultimate goal, however, is to design a robot with a basic learning software. It
should be capable of deriving schemata (cf. Sect. 5) and semantic relations of content (cf.
Sect. 7), and of automatically establishing and adapting instantiation classes22 (cf. Sect.
9). In this way, it should be able to continuously optimize behavior for daily survival in
the agent’s ecological niche. This may be done in small steps, first testing the artificial
agent in artificial environments it was specifically designed for, and then in new environ-
ments. By putting the artificial agent into more and more challenging test situations, the
control software may be fine-tuned in small steps, by hand andby automatic adaptation.

14. Component Structure and Functional Flow

At any moment in time, the DBS model of a cognitive agent distinguishes three kinds of
content: (i) old content stored in the Wordbank, (ii) new content provided by recognition,
and (iii) new content provided by inference. Recognition, including language interpreta-
tion in the hearer mode, interprets the data stream providedby the external and internal
interfacesnon-selectivelyand adds the resulting content to the Word Bank.

Inferences, in contrast, are triggeredselectivelyby items which match their antecedent.
Their derivation of new content is usually based on the subactivation of stored data
(cf. Sect.11), and is used as blueprints for action, including language production in the
speaker mode. Memories of these actions are added non-selectively23 to the Word Bank.

The procedures of recognition and of inference are formallybased on small sets of
connected pattern proplets, called DBS schemata, which operate on corresponding sets
of content proplets by means of pattern matching. The matching between individual pat-
tern proplets and content proplets is greatly facilitated by their non-recursive feature
structures (cf. [NLC’06], Sect. 3.2). So far, this method has been used for the following
cognitive operations:

14.1. COGNITIVE OPERATIONS BASED ON MATCHING

a. natural language interpretation:
matching between LA-hear grammar rules and language proplets (cf. [TCS’92],
[NLC’06], Sect. 3.4)

22[Steels 1999] presents algorithms for automatically evolving new classes from similar data by abstracting
from what they take to be accidental (in the sense of Aristotle).

23We are leaving aside the psychological phenomenon of repression (Unterdrückung) in natural agents.

b. navigation:
matching between LA-think grammar rules and content proplets (cf. [NLC’06],
Sect. 3.5, [Hausser 2009a])

c. querying:
matching between query patterns and content proplets (cf. [NLC’06], Sect. 5.1)

d. inferencing:
matching between inference rules and content proplets (cf.3.2, 4.1, 10.1, 10.4).

Navigation (b) and inferencing (d) jointly provide the conceptualization (what to say?)
and substantial parts of the realization (how to say it) for language production.

The different kinds of matching between pattern proplets and content proplets in com-
bination with the agent’s cognitive input and output suggest the following component
structure:24

14.2. COMPONENT STRUCTURE OF A COGNITIVE AGENT

peripheral
cognition

rule component

content component

central cognition

cognitive agent

5

6

78

2

1

43

I/O
 com

ponent

1 = external recognition
2 = external action
3 = internal recognition
4 = internal action
5 = input to rule component
6 = output of content component
7 = rule-content interaction
8 = content-rule interaction

The diagram shows three general components, (i) an I/O (input-output) component for
recognition and action, (ii) a rule component for interpretation and production, and (iii)
a content component for language and context (or non-language) data.

The separation of patterns and of contents into distinct components provides a uni-
form structural basis for the rule component to govern the processing of content (7) –
with data-driven feedback from the content component (8), including automatic schema
derivation (Sect. 9). The rule and the content component areeach connected unidirec-
tionally to the I/O component. All recognition output of this I/O component is input to
the rule component (5), where it is processed and passed on tothe content component (7).
All action input to the I/O component comes from the content component (6), derived in
frequent (8, 7) interaction with the rule component.

24The component structure 14.2 raises the question of how it relates to an earlier proposal, presented in
[NLC’06] as diagram 2.4.1. The [NLC’06] diagram models reference in the sense of analytic philosophy and
linguistics, namely as a vertical relation between a horizontal language level and a horizontal context level –
which is helpful for explaining the Seven Principles of Pragmatics (see [NLC’06], Sect. 2.6, for a summary).
In diagram 14.2, this earlier component structure is embedded into the content component.

Technically, the [NLC’06] diagram is integrated into 14.2 by changing to a different view: instead of viewing
content proplets as sets with a commonprn value (propositions), and separated into a language and a context
level, the same proplets are viewed as items to be sorted intotoken lines according to their core value.

Treating the [NLC’06] diagram as part of the content component in 14.2 serves to explain the separate

Conclusion

Language production in the speaker mode of a cognitive agentraises the question of
where the content to be realized should come from. The cycle of natural language com-
munication modeled in DBS answers this question by providing two sources: (i) content
provided by recognition, either current or stored in the agent’s memory, and (ii) blue-
prints for action derived on-the-fly by the agent to maintaina state of balance (equilib-
rium, homeostasis) vis-à-vis a constantly changing external and internal environment.

So far, work on the speaker mode in DBS has concentrated on a systematic description
of (i), i.e., production from recognition content (cf. [NLC’06], [Hausser 2009b]). This
paper, in contrast, explores the foundations of (ii), i.e.,a general solution to providing
blue-prints for meaningful actions by the agent, includingnatural language production.
As a consequence, our focus here is on thewhat to sayaspect of natural language pro-
duction (conceptualization) rather than thehow to say itaspect (realization).

A conceptualization based on a cognitive agent with a memoryand interfaces to the
external and internal environment is in a principled contrast to a language production
for weather reports or query answering for ship locations, train schedules, and the like.
The latter areagentlessapplications; they are popular in the research literature because
they allow to fudge the absence of an autonomous control. Their disadvantage, how-
ever, is that they cannot be extended to agent-based applications such as free dialog
[Schegloff 2007], whereas the inverse direction from an agent-based to an agentless ap-
plication is comparatively easy.

Proceeding on the assumption that a sound theoretical solution to natural language
production must be agent-based, this paper shows how an autonomous control based on
the principle of balance may be embedded into the cycle of natural language commu-
nication as formally modeled and computationally verified in DBS [NLC’06]. Founded
technically on a content-addressable memory and coreference-by-address (pointers), this
extension of the existing system requires a number of new procedures, such as automatic
schema derivation, the subactivation and evaluation of content, adaptation and learning,
the definition and chaining of inferences for deriving action blueprints, etc. The resulting
conceptual model of a cognitive agent is summarized by showing the basic components
and the functional flow connecting the interfaces for recognition with those for action.

To bring across the basic ideas, the presentation tries to beas intuitive as possible. Nev-
ertheless, the formal illustrations of contents, patterns, rules, intersections, etc., provide
the outline of a declarative specification for a straightforward transfer into efficiently
running code.

Acknowledgements

This paper benefitted from comments by Johannes Handl, Thomas Proisl, Besim
Kabashi, and Carsten Weber, research and teaching associates at the Abteilung für
Computer-Linguistik Uni Erlangen (CLUE).

input-output channels for the language and the context component in the earlier diagram: The I/O component
of 14.2 provides the rule component with a (usually clear) distinction between language and non-language
surfaces, resulting in a distinction between language proplets and context proplets during lexical lookup
[Handl et al. 2009]. Therefore, the input channel to the content component 7 and the output channel 8 may
each be divided into a part for language proplets and a part for context proplets.

References

[AIJ’01] Hausser, R. (2001). Database Semantics for natural language,Artificial Intelligence, 130.1:27–74,
Elsevier. Available online at http://www.linguistik.uni-erlangen.de/clue/de/publikationen.html

[Anderson 1983] Anderson, J. R. (1983). A spreading activation theory of memory,Journal of Verbal Learn-
ing and Verbal Behavior, 22:261-295

[Antsaklis and Passino 1993] Antsaklis, P.J., and K. M. Passino, eds. (1993).An Introduction to Intelligent
and Autonomous Control, Dordrecht: Kluwer Academic

[Arnold 1993] Arnold, M. B. (1984).Memory and the Brain, Hillsdale, NJ: Erlbaum
[Bernard 1865] Bernard, C. (1865).Introduction à l’étude de la médecine expérimentale, first English trans-

lation by Henry Copley Greene, published by Macmillan, 1927; reprinted in 1949
[Brachman 1979] Brachman, R.J. (1979). On the Epistemological Status of Semantic Networks, in N. Findler

(ed.)Associative Networks, pp. 3–50, Academic Press
[Brooks 1985] Brooks, R. (1985). A Robust Layered Control System for a Mobile Robot Cambridge, MA:

MIT AI Lab Memo 864, 227–270
[Chisvin and Duckworth 1992] Chisvin, L., and R. J. Duckworth (1992). Content-Addressable and Asso-

ciative Memory In M.C. Yovits (ed.)Advances in Computer Science, 2nd ed.pp. 159–235, Academic
Press

[Darwin 1872] Darwin, C. (1872/1998).The Expression of the Emotions in Man and Animals. 3rd edition.
London: Harper Collins

[FoCL’99] Hausser, R. (1999).Foundations of Computational Linguistics, 2nd ed.. Heidelberg Berlin New
York: Springer

[Grice 1965] Grice, P. (1965). Utterer’s meaning, sentencemeaning, and word meaning,Foundations of
Language, 4:1–18

[Handl et al. 2009] Handl, J., B. Kabashi, T. Proisl, and C. Weber (2009). JSLIM - Computational morphol-
ogy in the framework of the SLIM theory of language, in C. Mahlow and M. Piotrowski (eds.)State of
the Art in Computational Morphology, Berlin Heidelberg New York: Springer

[Hausser 2009a] Hausser, R. (2009). Modeling Natural Language Communication in Database Semantics,
Proceedings of the APCCM 2009, Australian Comp. Sci. Inc., CIPRIT, Vol. 96. Available online at
http://www.linguistik.uni-erlangen.de/clue/de/publikationen.html

[Hausser 2009b] Hausser, R. (2009). From Word Form Surfacesto Communication, in T. Tokuda et al. (eds.)
Information Modelling and Knowledge Bases XXI, Amsterdam: IOS Press Ohmsha. Available online at
http://www.linguistik.uni-erlangen.de/clue/de/publikationen.html

[Hutchinson 1948] Hutchinson, G.E. (1948). Circular Causal Systems in Ecology, Ann. New York Acad.
Science 50:221-246

[Lazarus and Lazarus 1994] Lazarus, R., and B. Lazarus (1994). Passion and Reason: Making Sense of Our
Emotions,New York: Oxford University Press

[Naphade and Smith 2009] Naphade, M.R., and J. R. Smith (2009.) Computer program product and system
for autonomous classification, Patent Application #:20090037358 - Class: 706 46 (USPTO)

[NLC’06] Hausser, R. (2006).A Computational Model of Natural Language Communication. Berlin Hei-
delberg New York: Springer

[Proust 1913] Proust, M. (1913).Du côté de chez Swann, ed. by Jean-Yves Tadie et al., Bibliotheque de la
Pleiade, Paris: Gallimard,1987-89

[Quillian 1968] Quillian, M. (1968). Semantic memory in M. Minsky (ed.),Semantic Information Process-
ing, 227–270, Cambridge, MA: MIT Press

[Salton 1989] Salton, G. (1989).Automatic Text Processing: The Transformation, Analysis,and Retrieval of
Information by Computer, Reading, Mass.: Addison-Wesley

[Schegloff 2007] Schegloff, E. (2007).Sequence Organization in Interaction, New York: CUP
[Steels 1999] Steels, L. (1999).The Talking Heads Experiment. Antwerp: limited pre-edition for the Labo-

ratorium exhibition
[TCS’92] Hausser, R. (1992). Complexity in Left-Associative Grammar. Theoretical Computer Science

106.2:283-308, Elsevier. Available online at http://www.linguistik.uni-erlangen.de/clue/de/publikatio-
nen.html

[Turney 2002] Turney, P. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsuper-
vised Classification of Reviews,Association for Computational Linguistics (ACL), 417-424

[Wiener 1948] Wiener, N. (1948).Cybernetics: Or the Control and Communication in the Animaland the
Machine, Cambridge, MA: MIT Press

