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Abstract. As a computational model of natural language communicabatabase
Semantick (DBS) includes a hearer mode and a speaker mode. For thentémte
be mapped into language expressions, the speaker modeese@ui autonomous
control. The control is driven by the overall task of maintag the agent in a state
of balance by connecting the interfaces for recognitiorhbse for action.

This paper proposes to realize the principle of balance ¢yeseces of inferences
which respond to a deviation from the agent's balance (@riggtuation) with a
suitable blueprint for action (countermeasure). The abrtystem is evaluated in
terms of the agent’s relative success in comparison othemtagnd the absolute
success in terms of survival, including the adaptation t sieuations (learning).

From a software engineering point of view, the central qoesbf an au-
tonomous control is how to structure the content in the agemtmory so that the
agent’s cognition can precisely select what is relevantraetpful to remedy a cur-
rent imbalance in real time. Our solution is based on theartraddressable mem-
ory of a Word Bank, the data structure of proplets defined asraoursive feature
structures, and the time-linear algorithm of Left-Asste@agrammar.

Introduction

Designing an autonomous control as a software system esaifunctional principle to
drive it. Following earlier work such as [Bernard 1865] akdi¢ner 1948], DBS control
is based on the principle tfalancei.e., it is designed to maintain the agent in a steady
state (equilibrium, homeostasis) relative to a continlyoetsanging external and internal
environment, short-, mid-, and long-tefn this way, changes of the environment are
utilized as the main motor activating the agent’s cognitigerations.

The balance principle guides behavior towards daily sahiiv the agent’'s ecologi-
cal niche. Behavior driven by instinct and by human desimsdirectly related to sur-
vival, such as power, love, belonging, freedom, and fun, alsy be subsumed under the
balance principle by treating them as part of the internairenment — like hunger.

The agent’s balancing operations provide the foundatiorafoomputational recon-
struction ofintentionin DBS, just as the agent’s recognition and action procesipre-
vide the foundation for a computational reconstructiorcofceptsand of meanings

1For an introduction to DBS see [NLC’06]. For a concise sumnsere [Hausser 2009a].

2Though conceptually much different from previous and aur@pproaches to autonomous control, our
mechanism is closer in spirit to circular causal systemsaiogy [Hutchinson 1948] than to the more recent
systems of control with a stratified architecture struclureo the levels of organization, coordination, and
execution [Antsaklis and Passino 1993].



(cf. [AIJ’01]). This differs from [Grice 1965], who basessmotion of meaning on an el-
ementary (undefined, atomic) notion of intention — whichrisuitable for computatiof.
An autonomous control maintaining a balance by relatinggeion to the evaluated
outcome of possible reactions is decentraliz@uline with [Brooks 1985].

1. Inferences of Database Semantics

Maintaining the agent in a state of balance is based on threks lof DBS inference,
called R(eactor), D(eductor), and E(ffector) inferent&.inferences are initiated by
a trigger provided (i) by the agent’s current external oeinal recognition or (ii) by
currently activated memories (subactivation, cf. SectD&nd E inferences, in contrast,
are initiated by other already active inferences, resglimchaining As a first, simple
method of chaining, let us assume that the consequent akimden must equal the
antecedent of inferencger1.

R(eactor) inferences provide a response to actual or pataigviations from the
agent’s balance (cf. 1.1, 4.1, 12.1). A given trigger autiicadly initiates exactly those
R inferences which contain the trigger concept, éagtor hungry, in their antecedent.

D(eductor) inferences establish semantic relations oferdnand are illustrated by
summarizing (cf. 3.2), downward traversal (cf. 10.1), apdvard traversal (cf. 10.4).
Other kinds of D inferences apreconditionandcause and effectriggered initially by
an R inference, a D inference may activate another D inferenan E inference.

E(ffector) inferences provide blueprints for the agenttian component8.Because
E inferences connect central cognition with peripherainitbgn, their definition has to
be hand-in-glove with the robotic hardware they are intértdecontrol.

The interaction of reactor, deductor, and effector infeesxis illustrated by the follow-
ing chain, using English rather than the formal data stmeod proplets for simplicity:

1.1. CHAINING R, D, AND E INFERENCES

. R: 3 is hungrycm g3 eats food.

. D: 3 eats foodpre 3 gets food.

. D: 3 gets food|l 3 getsa, wherea e {apple, pear, salad, steak]}.
. E: 5 getsa execg locates aty.

. E: 8 locatesn aty execfs takesa.

. E: B takesa exec(s eatsa.

. D: B eatsa ) 3 eats food.

Step 1 is an R inference with the connective (for countermeasure) and triggered by a
sensation of hunger. Step 2 is a D inference with the conregate (for precondition),

~NOo o~ WNBE

3Cf. [FoCL'99], Sect. 4.5, Example II.

4The cooperative behavior of social animals, e.g., ants alany, may also be described in terms of balance.

5This terminology is intended to distinguish DBS inferendesm the inferences of symbolic logic. For
example, while a deductive inference like modus ponenssadan form, the deductor inferences of DBS take
content into account.

5In robotics, effectors range from legs and wheels to armdiagérs. The E inferences of DBS should also
include gaze control.

"Proplets are defined as non-recursive (flat) feature stesand serve as the basic elements of propositions.
Like the cell in biology, the proplet is a fundamental unitstfucture, function, and organization in DBS.



while step 3 is the D inference for downward traversal with tonnective) (cf. 10.1).
Steps 4, 5, and 6 are E inferences with the conneetiee(for execute).

Step 4 may be tried iteratively for the instantiations ofdguovided by the consequent
of step 3 (see the restriction on the variab)e If the agent cannot locate an apple, for
example, it tries next to locate a pear, etc. Individual fpogferences of the agent may
be expressed by the order of the elements in the variablictast.

Step 7 is based on the D inference for upward traversal witlsdimnective) (cf. 10.4).
This step is called theompletionof the chain because the consequent of the inference
equals the consequent of step 1. The completion indicagesubcessful execution of
the countermeasure to the imbalance indicated by the atdéatef the initial reactor
inference.

2. Coreference-by-Address

The implementation of DBS inferences depends on the DBS mestnicture. Called
Word Bank, it is content-addressabie that it does not require a separate index (inverted
file) for the storage and retrieval of proplets. A contentt@dsable memory is especially
suitable for fixed content, i.e., content is written once meder changed. This provides a
major speed advantage over the more widely used coordatiateessable memory (as in
a relational database) because internal access may be drapeihters enabling direct
access to data.

In DBS, the requirement of fixed content is accommodated loynadcontent instead
of revising it, and by connecting the new content to the oldrt®ans of pointers. Con-
sider, for example, a cognitive agent observing at momehatJulia is sleepingand at
t; thatJulia is awake referring to the same person. Instead of representingtizage
by revising the first proposition into the secohthe second proposition is added as new
content, leaving the first proposition unaltered:

2.1. COREFERENTIAL COORDINATION IN AWORD BANK STORING PROPLETS

member proplets owner proplets
noun: Juli 'noun: (Julia 67
[fnc: sIeep? ... |fnc: wake SJ ... [core: Julid
prn: 675 Lprn: 702
[verb: wake
. |arg: (Julia 675} . [core: wake
Lprn: 702
verb: slee
) [arg:\]uliaﬁ ... [core: sleep
prn: 675

In a proplet, the part-of-speech attribute, emgun or verb, is called the core attribute
and its value is called the core value. A Word Bank stores|ptspvith equivalent core
values in the same token line in the order of their arrivak ©bcurrence oulia in the

8See [Chisvin and Duckworth 1992] for an overview.
9A more application-oriented example would foel level highat t; andfuel level lowat t.



second proposition is represented by a proplet with a ctribie containing an address
value, i.e.[noun: (Julia 675)], instead of a regular core value, e[ggun: Julia].

Coreference-by-address enables a given proplet to codaiag semantic relations to
other proplets as needed. For example, the proplets repimgdulia in 2.1 have the
fnc valuesleep in proposition 675, butvake in proposition 702. The most recent (and
thus most up-to-date) content relating to the original febjs found by searching the
relevant token line from right to left, i.e., in the anti-tporal direction.

Coreference-by-address combines with the semanticoaatif functor-argumentand
coordination structure, as in the following example:

2.2. COREFERENCEBY-ADDRESS CONNECTING NEW TO OLD CONTENT

verb: slee 1 [noun: Juli 5 [noun: (Julia 67 3 verb: wake
larg: Juliaj o lfnc: sleepj _ lfnc: wake T o larg: (Julia 675}
prn: 675 prn: 675 prn: 702 prn: 702

The connections 1 and 3 are intrapropositional and basetieofutctor-argument re-
lations betweerdulia andsleep andJulia andwake respectively. Connection 2 is ex-
trapropositional and based on the coreference betweernthtepproplet of proposition

702 and the originalulia proplet of proposition 675° One way to realize 2.2 in English
would beJulia was asleep. Now she is awake.

3. Inference for Creating Summaries

Coreference-by-address allows not only (i) to revise thedfimformation in a content-
addressable memory by extending it, as in 2.1, but alsod(idetrive new content from
stored content by means of inferencing. One kind of DBS atfee is condensing content
into a meaningful summary. As an example, consider a shett derived in detail in
Chapts. 13 (hearer mode) and 14 (speaker mode) of [NLC'06]:

The heavy old car hit a beautiful tree. The car had been spgedifarmer gave the driver a
lift.

A reasonable summary of this content wouldda accident This summary may be
represented in the agent’s Word Bank as follows:

3.1. RELATING SUMMARY TO TEXT

member proplets owner proplets
[noun: accide

mdr: (car 1) ... [core: accidert
Lprn: 67

noun: caf [noun: (car 1 [noun: (car 1)
... |fnc:hit | |fnc: speed | ... |mdd: accident ... [core: caf
prn: 1 prn: 2 Lprn: 67

10 its basic form, coreference-by-address is one-direatiofrom the pointer proplet to the original. The
inverse direction may be handled by building an additiondek. As usual, the proplets in 2.2 are order-free.
During language production, an order is re-introduced wgading from one proplet to the next.



verb: hit

arg: car tre
nc: 2 speed ... ... [core: hit
pc:
prn: 1
verb: spee
arg: (car 1)
pc: 1 hit ... [core: speefi
nc: 3 give
prn: 2

Propositions 1 and 2 are connected (i) by adjacency-basedlication coded in the
nc (next conjunct) angbc (previous conjunct) attribute values of their verb proplat
and speed and (ii) by coreferential coordination based on the oagjizar proplet in
proposition 1 and the corresponding pointer proplet in psiton 2.

The summary consists of anothear pointer proplet and thaccidentproplet, each
with the samern value (heres7) and related to each other by the modifier-modified re-
lation. The connection between the summary and the oritgnais based on the address
value(car 1), which serves as the core value of the rightmazstproplet as well as the
mdr (modifier) value of theaccidentproplet.

The summary-creating inference deriving the new contett thie prn value 67 is
formally defined as the following D(eductor) inference rigleown with the sample input
and output of 3.1 at the content level:

3.2. SUMMARY-CREATING D INFERENCE

antecedent consequent
rule noun: o [verb: hi noun:( noun: @ K) noun: accide
level fnc: hit arg:a 8 fnc: hit | = [mdd: accident [mdr: (o K)
prn: K Lprn: K prn: K prn: K+M prn: K+M
whereq e {car, truck, boat, ship, plane, ...} angle {tree, rock, wall, mountain, ...} «
matching and binding
['verb: hit
content{noun: ca] arg: car tre [noun: trej lnoun: (car 1)} [noun: accider:]\
fnc: hit nc: 2 speed |fnc: hit mdd: accident | mdr: (car 1)
level ) : i ) )
prn: 1 pc: prn: 1 prn: 67 prn: 67
Lprn: 1
input output

The rule level shows two sets of pattern proplets, calledatitecedent and the conse-
quent, and connected by the operater Pattern proplets are defined as proplets with
variables as values, while the proplets at the content Bwelot contain any variables.
The consequent pattern uses the address (or pointer, ¢f.23e@alue(a K) to relate to
the antecedent and has the new valueK+M, with M > 0.

In the rule, the possible values whiehand s may be bound to during matching are
restricted by the co-domains of these variables: the otstrivariablex generalizes the
summary-creating inference to different kinds of accideatg. car accident, truck ac-
cident,etc., while the restricted variablelimits the objects to be hit to trees, rocks, etc.,
as well as cars, trucks, etc. Any content represented by ribyget hit with a subject



and an object proplet satisfying the variable restrictiohs and3, respectively, will be
automatically (i) summarized as an accident of a certaid Wihereby (ii) the summary
is related to the summarized by means of an address value(daerl), thus fulfilling
the condition that the data in a content-addressable memaynot be modified.

By summarizing content into shorter and shorter versidreret emerges a hierarchy
which provides retrieval relations for upward or downwaaersal (cf. Sect. 10). An
upward traversal supplies more and more general notionghwhay be used by the
agent to access inferences defined at the higher levels. Awlamd traversal supplies
the agent with more and more concrete instantiations.

4. Horizontal and Vertical Aspects of Applying DBS Inferences

DBS inferences are defined as formal rules which are appiedntent in the agent’s
Word Bank by means of pattern matching. As a software omarasuch an applica-
tion may be divided into phases which happen to have hori¢@md vertical aspects.
The horizontal aspect concerns the relation between tlezatént and the consequent
of an inference and the chaining of inferences. The verisglect concerns the rela-
tion between the rule level and the content level, withinrgference and in a chain of
inferences.

Consider the formal definition of the first inference in 1 ipked to a suitable content:

4.1. FORMAL DEFINITION OF THE hungry-eaiR (EACTOR) INFERENCE

antecedent consequent
moun:3 7 [verb: hungry [noun: (3 K) [verb: eat [noun: foo
rule
level fnc: hungry| [arg:g3 cm | fnc: eat ] arg: G K) food] fnc: eat (]
Lprn: K 1 Lpmm: K ] Lprn: K+M Lprn: K+M Lprn: K+M
where 0< M < 6
matching and binding
content_noun: Julia] [verb: hgngry 'noun: (Julia 211) [verb: ea.t [noun: foo
level fnc: hungry| |[arg: Julia fnc: eat arg: (Julia 211) food |fnc: eat
Lprn: 211 | [prn: 211 | Lprn: 220 Lprn: 220 Lprn: 220

The upper bound is intended to ensure that the content of the consequerelg|fd-
lows the content of the antecedent. Furthermore, the il the antecedent’s subject
in the consequent by means of the address valld excludes cases in which one agent
is hungry and another one eats food — which would fail as attée countermeasure.

The rule application starts with the vertical grounding loé antecedent in the trig-
ger situation by matching and binding. Next there is thezmnal relation between the
grounded antecedent and the consequent, which formalizesrdermeasuren) con-
nected to the antecedent and its trigger situation. Finthléy patterns of the consequent
vertically derive a new content as a (preliminary) bluepfar action which may hori-
zontally activate another inference, as shown in 1.1.

5. Schema Derivation and Intersection

The sets of connected pattern proplets constituting thecadent and the consequent
of an inference like 3.2 or 4.1 are each called a DBS schentzerata are used in



general for retrieving (visiting, activating) relevanitent in a Word Bank. A schema is
derived from a content, represented as a set of propletgpytaneously substituting
all occurrences of a constant with a restricted variablensiter the following example
of a content:

5.1. PROPLETS CODING THE CONTENT ORulia knows John.

noun: Juli verb: know noun: Joh
fnc: know arg: Julia John | fnc: know
prn: 625 prn: 625 prn: 625

This representation characterizes functor-argumenttstrel in that theJulia and John
propleté! specifyknow as the value of theiinc attributest? and theknowproplet spec-
ifies Julia andJohn as the values of itarg attribute. The content may be turned into a
schema by replacing ifrn value625 with the variableK, restricted to the positive inte-
gers. This schema will select all propositions in a Word Buaitk a content equivalent
to5.1

The set of proplets matched by a schema is callegi@kl. The yield of a schema
relative to a given Word Bank may be controlled preciselywy tomplementary meth-
ods. One is by the choice and number of constants in a cont@nhvare replaced by
restricted variables. For example, the following schensalte from replacing the con-
stantslulia, John, and 625 in content 5.1 with the variabless, and K, respectively:

5.2. POSSIBLE SCHEMA RESULTING FROMb.1

noun:a verb: know] [noun:3
fnc: know| |arg:a fnc: know
prn: K prn: K prn: K

The yield of this schema are all contents in which someonevkremmeone. However,
if only John and 625 in content 5.1 are replaced by variables, the ragidtthema has a
smaller, more specific yield, namely all contents in whiclaJknows someone.

When a schema with several pattern proplets is used as a, fagtigld is obtained by
“intersecting” the token lines corresponding to the pat@oplets’ core values (provided
the latter are constants). As an example, consider the scfarhot potato

5.3. SCHEMA FOR hot potato
adj: hot noun: potat
mdd: potat mdr: hot
prn: K prn: K

The functor-argument structure of this example (congistiha modifier and a modi-
fied) is a schema because the value is the variabl&. Applying the schema to the
corresponding token lines in the following example resiltisvo intersections:

when we refer to a proplet by its core value, we use Italic, dain
12When we refer to an attribute or a value within a proplet, we Hslvetica, e.gfnc or know.



5.4. INTERSECTING TOKEN LINES FORMOtAND potato

member proplets owner proplets

[adj: hot [adj: hot [adj: hot [adj: hot

. | mdd: potato] mdd: wate} mdd: potato] mdd: da% [core:hot]
Lprn: 20 Lprn: 32 Lprn: 55 Lprn: 79
[noun: potato] [noun: potatd [noun: potato]| [noun: potat
fnc: look_for | | fnc: cook fnc: find fnc: eat )
mdr: hot mdr: big mdr: hot mdd: small [core.potato]
Lprn: 20 Lprn: 35 Lprn: 55 Lprn: 88

The intersections contain the proplets with pira values20 and55. They are selected
because the pattern proplets of schema 5.3 matchtmrtlyroplets with thendd (mod-
ified) valuepotato and onlypotatoproplets with thendr (modifier) valuehot.

The other method to control and adjust the yield of a schenia terms of the re-
strictions on the variables. Restrictions may consist iexglicit enumeration of what a
variable may be bound to (cf. 3.2). Restrictions may alsopeeified by constants, like
vehicle or obstacle, which lexically provide similar sets as the enumeratiothod by
using a thesaurus, an ontology, WordNet, or the like.

The two methods of fine-tuning a DBS schema result in prabticaperfect recall
and precision. This is crucial for autonomous control beeahe effective activation of
relevant data is essential for the artificial agent to maladgtecisions.

6. Subactivation (Selective Attention)

In DBS, the selection of content by means of schemata is cermgnhted by the equally
powerful method of subactivation: the concepts provideddazpgnition and inferencing
are used as a continuous stream of triggers which sele@smonding data in the Word
Bank. As an example, consider the following subactivatiba token line:

6.1. TRIGGER CONCEPT SUBACTIVATING A CORRESPONDING TOKEN LINE

member proplets owner proplet  trigger concept

adj: hot adj: hot adj: hot adj: hot
mdd: potatq |mdd: watef |mdd: potatq |mdd: day| ... [core: hof <« hot
prn: 20 prn: 32 prn: 55 prn: 79

Subactivation is an automatic mechanism of associafisasulting in a mild form of
selective attention. It works like a dragnet, pulled by theoiming concepts serving as
triggers and accompanying them with corresponding expeeiefrom the agent’s past.

Intuitively, subactivation may be viewed as highlighting area of content at half
strength, setting it off against the rest of the Word Bank soeh that exceptional evalua-
tions (cf. Sect. 8) are still visible as brighter spots. lis thay, the agent will be alerted to
potential threats or opportunities even in current siaregiwhich would otherwise seem
innocuous — resulting in virtual triggers for suitable irgfaces.

13Recall and precision are defined in terms of subjective usisfaction. Cf. [Salton 1989].
14Like associating a certain place with a happy memory.



The primary subactivation 6.1 may be extended into a secgrada tertiary one by
spreading activatidf [Quillian 1968]. For example, using the semantic relatiooded
by the left-most proplet in 6.1, the following propositioraynbe subactivated, based on
the continuation andrn valuespotato 20, look_for 20, andJohn 20:

6.2. SECONDARY SUBACTIVATION OF A PROPOSITION

verb: look_for
— noun: potato|

noun: John arg: John, potat fnc: look for adj: hot
fnc: look_for| | pc: cook 19 ’ — mdd: potato
prn: 20 nc: eat 21 prn: 20

prn: 20

mdr: hot
prn: 20

While a secondary subactivation utilizes the intraprofasal relations of functor-
argument and coordination structure (cf. [NLC’06], Chaptand 8), a tertiary subacti-
vation is based on the corresponding extrapropositiofetioas (cf. [NLC'06], Chapts.
7 and 9). For example, using tpe (previous conjunct) andc (next conjunct) values of
thelook_forproplet in 6.2, the tertiary subactivation may spread fdwhn looked for

a hot potato to the predecessor and successor propositions withatevaluescook
andeat, and theprn valuesl19 and21, respectively.

7. Semantic Relations

Subactivation may spread along any semantic relationsdegtwroplets. By coding the
semantic relations inside and between propositions sateproplet-internal values, pro-
plets become order-free and are therefore suitable foregffistorage and retrieval in the
content-addressable memory of a Word Bank. Subactivatiomaide especially efficient
by coding the semantic relations as pointers (cf. Sect. 2).

In DBS, the semantic relations are of two kinds, (i) form aifjccontent. The semantic
relations offormare functor-argument and coordination structure, intna-extrapropo-
sitionally; they are established during recognition anel atilized in the encoding of
blueprints for action. In natural language communicationexample, the semantic rela-
tions of grammatical form are established in the hearer nfa®gnition) and encoded
in the speaker mode (action).

The semantic relations aontentare exemplified by cause and effect, precondition,
the semantic hierarchies, etc. Content relations have bsehto define associative (or
semantic) networks (cf. [Brachman 1979] for an overview)DBS, semantic relations
of content are established by inferences.

The topic of semantic relations in general and of conterdtieis in particular is
widely discussed in linguistics, psychology, and phildsppContent relations in lexi-
cography, for example, are classified in termswfhonymy, antonymy, hypernymy, hy-
ponymy, meronymwgndholonymy In philosophy, content relations are viewed from a
different perspective, described by [Wiener 1948], p. Ex3ollows:

According to Locke, this [i.e., the subactivation of ideBs.] occurs according to three prin-
ciples: the principle of contiguity, the principle of sirailty, and the principle of cause and

15|n fiction, our notion of triggering a spreading subactivatis illustrated by the madeleine experience of
[Proust 1913], which brings back an almost forgotten areatwdt he calls "I'édifice immense du souvenir."



effect. The third of these is reduced by Locke, and even mefigitely by Hume, to nothing
but constant concomitance, and so is subsumed under thedinsiguity.

Formal examples of semantic relations of content in DBSlaestummary inference 3.2,
the hungry-eatinference 4.1, and the hierarchy inferences for downwareketsal 10.1
and for upward traversal 10.4. DBS inferences serve not tiniyaintain the agent’s
balance, but also code a kind of knowledge which is diffefirh a content like 5.1.

8. Evaluation of Content

If a cognitive agent were to value all subactivated contr@same, they would provide
little guidance towards successful behavior — neither labesdn terms of the agent’s
survival nor relative in comparison to other agents. Evenghth of daily routine, of
least resistance, or of following some majority is ultimpatihe result of choices based
on evaluation.

As a general notion, content evaluation has been investigatphilosophy, linguis-
tics, psychology, and neurology. In today’s natural largguarocessing, it has reap-
peared as theentiment detectionf data mining [Turney 2002]. In modern psychol-
ogy, evaluation is analyzed iamotion theoryArnold 1993] and inappraisal theory
[Lazarus and Lazarus 1994].

For a software model of control, evaluations are not so mugrestion of how they are
expressed or which of them are univerSabut how they are assigned internally by indi-
vidual agents. In DBS, evaluations are assigned when netecbis read into the agent’s
Word Bank — by recognition or by inference. At their lowestdk recognition-based
evaluations must be integrated into the agent’s hardwise (leey would be figments of
imagination). For exampléot andcold require a sensor for temperature.

Evaluations have been classified in termgayf sadness, feagr anger, and are ex-
pressed in terms @foodvs. bad, true vs.falsg excellent/s. poor, virtuousvs. depraved
bravevs.cowardly, generouws. cheap loyal vs.treacherousdesirablevs. undesirable
acceptablevs. unacceptableetc. For guiding the autonomous control of a cognitive
agent, DBS uses the featufesal: attract] and[eval: avoid]. They are of a more basic
and more neutral nature, and fit into the data structure gflpte. Their values may be
scalar and may be set between neutral (0) and the extremepttically approaching
-lor+1.

The overall purpose of DBS evaluation is to record (i) anyaktleviation from the
agent’s state of balance, (ii) any impending threat to then#ig balance, and (iii) any
possibility to secure positive aspects of maintaining therd's balance mid- and long-
term. Each is used as a trigger for selecting an inferencehngtriovides an appropriate
reaction. For example, if it is too hot (evaluation-baségber), go to where it is cooler
(inference-based reaction).

9. Adaptation and Learning

The mechanism of deriving and adjusting DBS schemata (ct. Sgholds at a level of
abstraction which applies to natural and artificial agelike aBecause of the simplicity

18Cf. [Darwin 1872], Chapt. XIV, pp. 351-360.



of this mechanism, artificial agents may be designed likenahagents in that they adjust
automatically over time. Thereby, the following differesdetween natural and artificial
agents do not stand in the way:

In natural agents, adjusting to a changing environment dsas®ptimizing come in
two varieties, (i) the biologicahdaptationof a species in which physical abilities and
cognition are co-evolved, and (ii) thearning of individuals which is mostly limited to
cognition. Adaptation and learning differ also in that ttagply to different ranges of
time and different media of storage (gene memory vs. braimang).

In artificial agents, in contrast, improvement of the hardwa the work of engineers,
while development of an automatically adjusting cognitiothe work of software de-
signers. Because of this division between hardware and/ardt the automatic adjust-
ment of artificial agents corresponds more to learning tbauaptation. Fortunately, the
absence of natural inheritance in artificial agents may bB#ysaompensated by copying
the cognition software (including the artificial agent'gexiences and adaptations) from
the current hardware model to the next.

The DBS mechanism underlying adaptation as well as leaisibgsed on (i) deriving
schemata from sets of content proplétsy replacing constants with variables and on (ii)
adjusting the restrictions of the variables (cf. Sect. BjsThechanism may be automated
based on the frequency of partially overlapping contents:

9.1. A SET OF CONTENTS WITH PARTIAL OVERLAP

Julia eats an apple
Julia eats a pear
Julia eats a salad
Julia eats a steak

For simplicity, the propositions are presented in Englisther than by corresponding
sets of proplets.

Because of their partial overlap, the propositions may leraatically summarized as
the following schema:

9.2. SUMMARIZING THE SET 9.1 WITH A SCHEMA

Julia eatsy, wherea ¢ {apple, pear, salad, steak}

Due to the restriction on the variable 9.2 is strictly equivalent to 9.1.
The next step is to replaeeby a concept serving as a hypernym, hiexec

9.3. REPLACING THE RESTRICTED VARIABLE BY A HYPERNYM

Julia eats food, where foad{apple, pear, salad, steak}

This concept may serve as the literal meaning of the viood in English,aliment in
FrenchNahrung in German, etc. (cf. [Hausser 2009b]).
Implicit in the content of 9.3 is the following semantic raechy:

17Content proplets consist of context proplets and languagplets (cf. [NLC'06], Sect. 3.2). Language
proplets consist of unconnected lexical proplets (e.d-M6], 5.6.1) and the connected proplets of language-
based propositions (e.g., [NLC'06], 3.2.4).



9.4. REPRESENTING THE SEMANTIC HIERARCHY IMPLICIT IN9.3AS A TREE

food

A

apple pear salad stei

The automatic derivation of a semantic hierarchy illugtdain 9.1 — 9.3 is empirically
adequate if the resulting class containing the instaptigticorresponds to that of the
surrounding humans. For example, if the artificial agentokes humans to habitually
(frequency) eat miisli, the restriction list afmust be adjusted corresponding®yFur-
thermore, the language surface chosen by the artificialtdgethe hypernym concept
(cf. 9.3) must correspond to that of the natural languags u

10. Hierarchy Inferences

An agent looking for food must know that food is instantiabgtapples, pairs, salad, or
steaks, just as an agent recognizing an apple must knowt ttet ibe used as food. In
DBS, this knowledge is implemented in terms of inferencegte downward and the
upward traversal of semantic hierarchies like 9.4.

For example, if Julia is looking for food, the following doward inference will derive
the new content that Julia is looking for an apple, a pearaasar a steak:

10.1. HIERARCHY-INFERENCE FOR DOWNWARD TRAVERSAL

antecedent consequent

rule level fnc: 8 fnc: (B K)
Lprn: K Lprn: K+M
wherea € {apple, pear, salad, steak}
matching and binding

noun: foo fnoun:«
(3

noun: Julia verb: look_fof] [noun: food [noun:«
content level| fnc: look_for| |arg: Julia food |fnc: look_for verb: (look_for 18
prn: 18 prn: 18 Lprn: 18 Lprn: 25

The antecedent consists of a single pattern proplet witltohe valuegfood. When this
pattern matches a corresponding proplet at the content keeconsequent derives a
new content containing the following disjuncti§rof several proplets with core values
corresponding to the elements of the restriction set:of

10.2. OUTPUT DISJUNCTION OF THE DOWNWARD INFERENCE APPLICATION 2.1

noun: appleor noun: peatf [noun: sala noun: steal
fnc: (look_for 18)[ | pc: apple pc: pear pc: salad
nc: pear nc: salad nc: steak nc:

prn: 25 prn: 25 prn: 25 prn: 25

18This method resembles the establishment of inductive énfes in logic, though based on individual
agents.

195ee [NLC'06], Chapt. 8, for a detailed discussion of intoggmsitional coordination such as conjunction
and disjunction.



The proplets of the output disjunction are concatenatetiégd (for previous conjunct)
andnc (for next conjunct) features, and have the rpaw value25. They are related to
the original proposition by the pointer addréksk _for 18) serving as thénc value of

the first disjunct. The output disjunction may be completetbaatically into the new
propositionJulia looks_for apple or pear or salad or steak, represented as follows:

10.3. PROPOSITION RESULTING FROM APPLYING DOWNWARD INFERENCHE2.1

'noun: (Julia 18) verb: (look_for 18) Pnocl?rzlloaorliplfi)rr 18) ;gygbgia
fnc: (look_for 18)] [arg: (Julia 18) appler] nC"pear - nc: salad
Lprn: 25 prn: 25 prﬁ: o5 prﬁ: o5
[noun: sala noun: stea

pc: pear pc: salad

nc: steak nc:

Lprn: 25 prn: 25

This new proposition with thern value25 is derived from the given proposition with
theprn valuel18 shown at the content level of 10.1, and related to it by poivadues.
The inverse of downward traversal is the upward traversalsgmantic hierarchy. An
upward inference assigns a hypernym likedto concepts likesalador steak Consider
the following definition with an associated sample input aatput at the content level:

10.4. HIERARCHY-INFERENCE FOR UPWARD TRAVERSAL

antecedent consequent

noun:« noun: foo
rule level a ¢ {apple, pear, salad, steak} & |fnc: 3 1 |fnc: (B k)
prn: K prn: K+M

matching and binding

noun: Julia] [verb: prepare noun: sala noun: food
content level [fnc: prepar% larg: Julia sala} [fnc: prepa% [fnc: (prepare 23})

prn: 23 prn: 23 prn: 23 prn: 29
Like the downward inference 10.1, the antecedent of the wupbivderence consists of
a single pattern proplet with the restricted variablas the core value. Due to the use
of a pointer address as tliec value of the output (required anyway by the content-
addressable memory of DBS), there is sufficient informatiiocomplete the output pro-
plets into the propositiodulia prepares food, with the prn value29 and pointer pro-
plets forJulia andprepare

The limited matching used by the upward and downward infezsmas the advantage

of generality. The automatic derivation and restrictiorsofiemata (cf. Sect. 9) directly
controls the automatic adaptation of the hierarchy infeesnThey illustrate how DBS is
intended to fulfill the three functions which define an autmimsystem: “automatically
configure itself in an environment, optimize its performansing the environment and
mechanisms for performance, and continually adapt to irgperformance and heal
itself in a changing environment” [Naphade and Smith 2009].



11. Analogical Models as Blueprints for Action

To obtain a suitable blueprint for an action, the agent magmble reactor, deductor,
and effector inferences creatively into a new chain — whiely or may not turn out to be
successful. Most of the time, however, it will be easier aaf@éisfor the agent to re-use
an earlier action sequence, successfully self-performedserved in others, provided
such an analogical model is available in the agent's menTdvgse earlier models are
contained at various levels of detail in the contents sukated by the initial R inference.

The R inference defined in 4.1, for example, subactivatesaaitents matching the
B is hungry schema (antecedent), titleeats food schema (consequent), as well the
token lines of the inference’s constants, hbumgry, eat, andfood. By spreading to
secondary and tertiary subactivations (cf. Sect. 6), thiaiR inference may subactivate
a large set of contents in the agent's Word Bank. These serilistrate the trigger
situation with a cloud of subactivations (cf. [NLC'06], $6.6), but their precision is
too low as to provide a specific blueprint for practical, gdaected action.

In order for a content stored in memory to be useful for resglthe agent's current
challenge, it must (i) fit the trigger situation as precisadypossible and (ii) have a posi-
tively evaluated outcome. For this, our method of choiceBSIntersection (cf. Sect. 5).

Assume that the agent is alone in Mary’s house — which servestagger (cf.6.1)
subactivating the token line dfary in the agent’s Word Bank. Furthermore, the agent is
hungry, which triggers thungry-eatinference 4.1. The constaeatin the consequent
subactivates the corresponding token line, resulting tersections between thdary
andeattoken lines such as the following:

11.1. EXAMPLE OF TWO Mary eat INTERSECTIONS

) verb: eat ) verb: eat
nou_n. (Mary 25 arg: (Mary 25)apple nou_n. (Mary 25 arg: (Mary 25) misl
fnc: eat X fnc: eat X
m: 49 pc:take 48 m: 82 pc: take 81
prn: prn: 49 prn: prn: 82

In other words, the agent remembers Mary once eating an apglence eating muisli.
The two proplets in each intersection sharpra value, namely 49 and 82, respec-

tively, and are in a grammatical relation, namely functayeenent structure. In both in-

tersections, the verb propleatprovides two continuations. For example, the verb of the

first intersection provides the continuation valagple andtake 48, which may result

in the following secondary and tertiary subactivations §#ct. 6).

11.2. SUBACTIVATION SPREADING FROMMary eatTo Mary take apple.

_ ) verb: eat [noun: appldg
nOLfn' (Mary 25) arg: (Mary 25)apple| |fnc: eat
fnc: eat X )
prn: 49 pc:take 48 eval: attract
- prn: 49 | Lprn: 49
verb: take
'noun: (Mary 25) |arg: (Mary 25) applé [noun: applé@
fnc: take nc: eat 49 fnc: take
Lprn: 48 | | pc:locate 47 Lprn: 48
prn: 48




The anti-temporal order corresponds to the spreadingtiireof the subactivation.

The apple 49proplet (secondary subactivation) contains éval attribute with the
valueattract. Assuming that the corresponding subactivation for theisééntersection
happens to evaluate tmeiisli 82proplet aseval: avoid?® (not shown), the agent would
pursue only the tertiary subactivation from the first (antithe second) intersection in
11.1 as a possible candidate for an analogical model foineggbalance.

To get at the information relevant for finding something td ieaMary’s house, the
subactivation 11.2 may spread further, based onpthéfor previous conjunct) value
locate 47 of thetake 48proplet. In this way, the subactivation of the earlier egtnent
may be completed into the following backward sequence gi@sitions:

11.3. SUBACTIVATED SEQUENCE OF PROPOSITION$ANTI-TEMPORAL ORDER

Mary eat apple [prn: 49]. Mary take apple [prn: 48]. Mary ltecapple in blue cup-
board [prn: 47].

The information relevant for the hungry agent is the locafimm where Mary got the
apple, i.e., the blue cupboard.

If the anti-temporal order is reversed, the propositiorislir8 will match the antecedent
of step 5 in Example 1.1 all the way to the consequent of st&hig.completes the chain
relative to the consequent of the initial R inference 4.hatlevel of content, obviating
steps 1-4 and thus without any assertion that Mary was huwigen she ate the appié.

From the content 11.3 provided by memory via intersectibe,agent may obtain an
analogical model by (i) reversing the order and (ii) replgcthe valueMary with a
pointer to the agent, representechas:

11.4. RESULTING ANALOGICAL MODEL

execMoi locate apple in blue cupboard [prn: 10tecMoi take apple [prn: 103]
execMoi eat apple [prn: 104} Moi eat food [prn: 105]

Whether or not these blueprints for the agent’s action carapts will result in a success-
ful countermeasure depends on whether proposition 102 turhto hold in the agent’s
current situation or not.

12. Learning by Imitation

The purposeful subactivation of an earlier content in thed\ank by means of inter-
section provides the agent with an analogical model patyuitable to remedy its
current imbalance. For example, instead of looking rangdahrbugh Mary’s house for
something to eat, the agent will begin with searching forgmiain the blue cupboard.

To implement such a system requires an agent with interfacescognition and ac-
tion of a quality not yet available. Therefore, let us copsia simpler example, namely a
robot loading its battery at one of several loading statiarits environment. In analogy
to 1.1, this behavior may be controlled by the following chai inferences:

20The assumed evaluations reflect the agent's preferenciing egpples over eating musli.
21if the agent were to assume (unnecessarily) that Mary musteen hungry, then this would correspond
to an abductive inference in logic. The point is that obser\Wiary eating is sufficient for the purpose at hand.



12.1. AUTONOMOUS CONTROL AS A CHAIN OFR-D-E INFERENCES

R: 3 low batterycm (3 load battery.

D: 5 load batterypre 5 locate station.

D: 3 locate statiorj ( locate«, wherea € {1, 2, 3, etc. }.
E: 5 locatex exec/ attach too.

5. D: 3 attach tox 1} 3 attach to station.

6. E: 3 attach to statioexecg load battery.

1.
2.
3.
4,

The connectivesm (countermeasurepre (precondition),| (is instantiated by} (hy-
pernym), ancexec(execute) are as in 1.1. Steps 3 and 5 show a primitive secrainti
erarchy, namely the termstation for the instantiations ofv. The consequent of step 6
provides completion.

In terms of current technology, each notion used in thiswsn# program, e.glo-
cate, attach, orload, has a rather straightforward procedural counterpag.thérefore
possible even today to build a real robot in a real envirortrperforming this routine.

Instead of programming the robot’s operations directlyefeample in C or Java, let us
use a declarative specification in terms of proplets in a V&audk. In other words, the
robots’ recognitions, e.glocate «, are stored in its Word Bank as sets of proplets and
the robot’s actions, e.gattach_to «, are controlled by sequences of proplets.

To simulate learning by imitation, let us use two such ropcafied A and B. Initially,
each is training in its own environment, whereby A has thalilog stations 1 and 2,
and B has the loading stations 3, 4, and 5 — with their respeativariables defined
accordingly. Once the individual loading routines are vestiablished for both, A is put
into the environment of B.

To simplify A's recognition of loading events by B, let us aste that B emits a signal
every time it is loading and that A can correctly interpret gignal. In order for A to
imitate B, A must follow B, remember the new locations, and@d\'s definition of«
to the new environment. The new loading stations may diffdright, which may cause
different efforts of reach, thus inducing preferencesl(eation).

After following B around, A's battery is low. This imbalant¢eggers step 1 in 12.1.
Being in B’s environment, A subactivates the token line ohBAls Word Bank, while
the consequent of step 1 subactivates the token liheaaf leading to their intersection
—inanalogy to 11.1. Spreading results in secondary andrtggubactivations:

12.2. SUBACTIVATED SEQUENCE OF PROPOSITION$ANTI-TEMPORAL ORDER

B load battery [prn: 69]. B attach to station 3 [prn: 68]. Bdbe station 3 [prn: 67].
By reversing the spreading order into the temporal ordertanceplacing B by A, the
visiting robot obtains the following blueprints for its @t components:

12.3. BLUEPRINTS FOR ACTION

A locate station 3 [prn: 87]. A attach to station 3 [prn: 88]load battery [prn: 89].

Except for the replaced subject, these propositions cookigcognition content from
As memory. Therefore, their core values are tokens cagrgensory, motor, and con-
ceptual information which is not provided by the types of itiference chain 12.1, but
essential for action blueprints sufficiently detailed tosteathe situation at hand.



13. Fixed vs. Adaptive Behavior

The behavior of robot A described above is flexible in thatit @dapt to different en-
vironments of &nown kind here two rooms which differ in the number and location of
loading stations. In this example, the artificial agentsthed artificial environments are
co-designed by the engineers.

A more demanding setup is to take a given natural environiarethto design a robot
able to maintain a balance relative to internal and exteimahges. This requires (i) anal-
ysis of the external environment, (ii) construction of mfidees for the agent’s recognition
of, and action in, the external environment, and (iii) deiom of R(eactor), D(eductor),
and E(ffector) inferences for optimal survival.

The ultimate goal, however, is to design a robot with a bas@erling software. It
should be capable of deriving schemata (cf. Sect. 5) andrg@malations of content (cf.
Sect. 7), and of automatically establishing and adaptistaitiation classé$(cf. Sect.
9). In this way, it should be able to continuously optimizénéeaor for daily survival in
the agent’s ecological niche. This may be done in small sfagstesting the artificial
agent in artificial environments it was specifically desijfar, and then in new environ-
ments. By putting the artificial agent into more and more leimgling test situations, the
control software may be fine-tuned in small steps, by handgrauitomatic adaptation.

14. Component Structure and Functional Flow

At any moment in time, the DBS model of a cognitive agent diatishes three kinds of
content: (i) old content stored in the Wordbank, (ii) newtsr provided by recognition,
and (iii) new content provided by inference. Recognitiorejuding language interpreta-
tion in the hearer mode, interprets the data stream provwgiéde external and internal
interfaceson-selectiveland adds the resulting content to the Word Bank.

Inferences, in contrast, are triggesectivel\by items which match their antecedent.
Their derivation of new content is usually based on the stilion of stored data
(cf. Sect.11), and is used as blueprints for action, inclgdanguage production in the
speaker mode. Memories of these actions are added nonigale? to the Word Bank.

The procedures of recognition and of inference are formadlged on small sets of
connected pattern proplets, called DBS schemata, whictatgpen corresponding sets
of content proplets by means of pattern matching. The magdhétween individual pat-
tern proplets and content proplets is greatly facilitatgdtteir non-recursive feature
structures (cf. [NLC’06], Sect. 3.2). So far, this method baen used for the following
cognitive operations:

14.1. COGNITIVE OPERATIONS BASED ON MATCHING
a. natural language interpretatian

matching between LA-hear grammar rules and language gsofde [TCS'92],
[NLC'06], Sect. 3.4)

22[Steels 1999] presents algorithms for automatically emghnew classes from similar data by abstracting
from what they take to be accidental (in the sense of Arisotl
23\We are leaving aside the psychological phenomenon of reipreg¢Jnterdriickung in natural agents.



b. navigation
matching between LA-think grammar rules and content ptslef. [NLC’06],
Sect. 3.5, [Hausser 2009a])
C. querying
matching between query patterns and content propletdtLC[06], Sect. 5.1)
d. inferencing
matching between inference rules and content proplet8.@&f4.1, 10.1, 10.4).

Navigation (b) and inferencing (d) jointly provide the ceptualization What to say?
and substantial parts of the realizatitmo{ to say it for language production.

The different kinds of matching between pattern proplets@mtent proplets in com-
bination with the agent’s cognitive input and output suggkes following component
structure?*

14.2. COMPONENT STRUCTURE OF A COGNITIVE AGENT

cognitive agent

peripheral oo :
cognition  :  central cognition
: 1 = external recognition
s ‘ rule component 2 = external action
1 3 5 ; 3 = internal recognition
= ‘ T 8 i 7 ; 4 = internal action
% ; 5 = input to rule component
2 2 6 : | content component| ! 6 = output of content component
‘ : 7 = rule-content interaction
3T i4 e : 8 = content-rule interaction

The diagram shows three general components, (i) an I/O tiopiput) component for
recognition and action, (ii) a rule component for interptemn and production, and (iii)
a content component for language and context (or non-laye)ata.

The separation of patterns and of contents into distinctpmomants provides a uni-
form structural basis for the rule component to govern tlae@ssing of content (7) —
with data-driven feedback from the content component (8)uding automatic schema
derivation (Sect. 9). The rule and the content componenéacé connected unidirec-
tionally to the I/O component. All recognition output of $hH/O component is input to
the rule component (5), where it is processed and passedioa tontent component (7).
All action input to the 1/O component comes from the contemponent (6), derived in
frequent (8, 7) interaction with the rule component.

24The component structure 14.2 raises the question of howaiteseto an earlier proposal, presented in
[NLC'06] as diagram 2.4.1. The [NLC'06] diagram models refece in the sense of analytic philosophy and
linguistics, namely as a vertical relation between a haoizblanguage level and a horizontal context level —
which is helpful for explaining the Seven Principles of Rregics (see [NLC'06], Sect. 2.6, for a summary).
In diagram 14.2, this earlier component structure is eméediato the content component.

Technically, the [NLC'06] diagram is integrated into 14y2dhanging to a different view: instead of viewing
content proplets as sets with a comnn value (propositions), and separated into a language andtaxto
level, the same proplets are viewed as items to be sortedokén lines according to their core value.

Treating the [NLC'06] diagram as part of the content comprria 14.2 serves to explain the separate



Conclusion

Language production in the speaker mode of a cognitive agésds the question of
where the content to be realized should come from. The cyalatoral language com-
munication modeled in DBS answers this question by progitlivo sources: (i) content
provided by recognition, either current or stored in thersigememory, and (ii) blue-
prints for action derived on-the-fly by the agent to maintaistate of balance (equilib-
rium, homeostasis) vis-a-vis a constantly changing eateand internal environment.

So far, work on the speaker mode in DBS has concentrated astensgtic description
of (i), i.e., production from recognition content (cf. [NL@B], [Hausser 2009b]). This
paper, in contrast, explores the foundations of (ii), eegeneral solution to providing
blue-prints for meaningful actions by the agent, includiragural language production.
As a consequence, our focus here is onuihat to sayaspect of natural language pro-
duction (conceptualization) rather than th@w to say itlaspect (realization).

A conceptualization based on a cognitive agent with a merandyinterfaces to the
external and internal environment is in a principled casttta a language production
for weather reports or query answering for ship locatiorantschedules, and the like.
The latter areagentlessapplications; they are popular in the research literatehbse
they allow to fudge the absence of an autonomous controlir disadvantage, how-
ever, is that they cannot be extended to agent-based atisasuch as free dialog
[Schegloff 2007], whereas the inverse direction from amadpased to an agentless ap-
plication is comparatively easy.

Proceeding on the assumption that a sound theoreticali@oltd natural language
production must be agent-based, this paper shows how anautws control based on
the principle of balance may be embedded into the cycle afrahtanguage commu-
nication as formally modeled and computationally verifieddBS [NLC'06]. Founded
technically on a content-addressable memory and coreferey-address (pointers), this
extension of the existing system requires a number of nesgghares, such as automatic
schema derivation, the subactivation and evaluation ofectipadaptation and learning,
the definition and chaining of inferences for deriving actiueprints, etc. The resulting
conceptual model of a cognitive agent is summarized by stigptie basic components
and the functional flow connecting the interfaces for redgmwith those for action.

To bring across the basic ideas, the presentation triesdse Imguitive as possible. Nev-
ertheless, the formal illustrations of contents, pattemes, intersections, etc., provide
the outline of a declarative specification for a straightfard transfer into efficiently
running code.
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input-output channels for the language and the context oot in the earlier diagram: The 1/O component
of 14.2 provides the rule component with a (usually cleas}idction between language and non-language
surfaces, resulting in a distinction between language let®mnd context proplets during lexical lookup

[Handl et al. 2009]. Therefore, the input channel to the eonhtomponent 7 and the output channel 8 may
each be divided into a part for language proplets and a pacofttext proplets.
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