
FoCL, Chapter 11: Hierarchy of LA-grammar 170

11. Hierarchy of LA-grammar

11.1 Generative capacity of unrestricted LAG

11.1.1 Generative capacity of unrestricted LA-grammar

Unrestricted LA-grammar accepts and generates all and only the recursive languages.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 171

11.1.2 Theorem 1

Unrestricted LA-grammar accepts and generatesonly the recursive languages.

Proof: Assume an input string of finite lengthn. Each word in the input string has a finite number of readings
(> 0).

Combination step 1: The finite set of start states STS and all readings of the first word w1 result in a finite set of
well-formed expressions WE1 = {(ss’ rpS) j ss’� (W+ � C+)}.

Combination step n: Combination step k-1, k> 1, has produced a finite set of well-formed expressions WEk =
{(ss’ rpi) j i � n, ss’� (W+ � C�) and the surface of each ss’ has length k}. The next word wk+1 has a finite
number of readings.

Therefore, the Cartesian product of all elements of WEk and all readings of the current next word will be a finite
set of pairs. Each pair is associated with a rule package containing a finite set of rules. Therefore, combination
step k will produce only finitely many new sentence starts. The derivation of this finite set of new sentence starts
is decidable because the categorial operations are defined to be total recursive functions.

Q.E.D.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 172

11.1.3 Theorem 2

Unrestricted LA-grammar accepts and generatesall recursive languages.

Proof: Let L be a recursive language with the alphabet W. Because L is recursive, there is a total recursive
function%: W�! {0,1}, i.e., the characteristic function of L. Let LAGL be an LA-grammar defined as follows:

The set of word surfaces of LAGL is W.

The set of category segments C =def W [{0,1}.

For arbitrarye, f � W+, [e (f)] � LX if and only if e = f.

LX =def {[a (a)], [b (b)], [c (c)], [d (d)], . . . }
STS =def {[(segc) { r1, r2}]}, where segc � {a, b, c, d,: : : }
r1: (X) (segc)) (X segc) { r1, r2}
r2: (X) (segc)) % (X segc) { }
STF =def {[(1) rp2]}

After any given combination step, the rule package rp1 offers two choices: application of r1 to continue reading
the input string, or application of r2 to test whether the input read so far is a well-formed expression of L. In the

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 173

latter case, the function% is applied to the concatenation of the input categories, which are identical to the input
surfaces. If the result of applying r2 is [(1) rp2], the input surface is accepted; if it is [(0) rp2], it is rejected.

Since the categorial operations of LAGL can be any total recursive function, LAGL may be based on%, the
characteristic function of L. Therefore, LAGL accepts and generates any recursive language.

Q.E.D.

11.1.4 Definition of the class of A-LAGs.

The class of A-LAGs consists of unrestricted LA-grammars and generatesall recursive languages.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 174

11.2 LA-hierarchy of A-, B-, and C-LAGs

11.2.1 Parameters of complexity

� Theamountof computation per rule application required in the worst case.

� Thenumberof rule applications relative to the length of the input needed in the worst case.

11.2.2 Main approaches to restricting LA-grammar

R1: Restrictions on the form of categorial operations in order to limit the maximal amount of computation
required by arbitrary rule applications.
R2: Restrictions on the degree of ambiguity in order to limit the maximal number of possible rule appli-
cations.

11.2.3 Possible restrictions on categorial operations

R1.1:Specifying upper bounds for thelengthof categories;
R1.2:Specifying restrictions onpatternsused in the definition of categorial operations.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 175

11.2.4 Definition of the class of B-LAGs.

The class ofboundedLA-grammars, or B-LAGs, consists of grammars where for any complete well-
formed expression E the length of intermediate sentence start categories is bounded byk � n, wheren is
the length of E andk is a constant.

11.2.5 Rule schemata with constant categorial operations

ri: (seg1...segk X) cat2) cat3 rpi

ri: (X seg1...segk) cat2) cat3 rpi

ri: (seg1...segm X segm+1...segk) cat2) cat3 rpi

11.2.6 Rule schema with nonconstant categorial operation

ri: (X seg1...segk Y) cat2) cat3 rpi

11.2.7 Definition of the class of C-LAGs.

The class ofconstantLA-grammars, or C-LAGs, consists of grammars in which no categorial operation
coi looks at more thank segments in the sentence start categories, for a finite constantk.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 176

11.2.8 The hierarchy of A-LAGs, B-LAGs, and C-LAGs

The class of A-LAGs accepts and generates all recursive languages, the class of B-LAGs accepts and
generates all context-sensitive languages, and the class of C-LAGs accepts and generates many context-
sensitive, all context-free, and all regular languages.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 177

11.3 Ambiguity in LA-grammar

11.3.1 Factors determining the number of rule applications

The number of rule application in an LA-derivation depends on

1. the length of the input;

2. the number of rules in the rule package to be applied in a certain combination to the analyzed input pair;

3. the number of readings existing at each combination step.

11.3.2 Impact on complexity

� Factor 1 is grammar-independent and used as the lengthn in formulas characterizing complexity .

� Factor 2 is a grammar-dependent constant.

� Only factor 3 may push the total number of rule applications beyond a linear increase. Whether for a given
input more than one rule in a rule package may be successful depends on the input conditions of the rules.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 178

11.3.3 Regarding factor 3: Possible relations between the input conditions of two rules

1. Incompatibleinput conditions: if there exist no input pairs which are accepted by both rules.

Examples: (a X) (b) (a X) (b)
(c X) (b) (a X) (c)

2. Compatibleinput conditions: if there exists at least one input pair accepted by both rules and there exists at
least one input pair accepted by one rule, but not the other.

Examples: (a X) (b)
(X a) (b)

3. Identicalinput conditions: if all input pairs are either accepted by both rules or rejected by both rules.

11.3.4 Definition of unambiguous LA-grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules have
incompatibleinput conditions and (ii) there are no lexical ambiguities.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 179

11.3.5 Definition of syntactically ambiguous LA-grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package containing
at least two rules withcompatibleinput conditions and (ii) there are no lexical ambiguities.

11.3.6 +global syntactic ambiguity

A syntactic ambiguity is called +global if it is a property of the whole sentence.

Example:Flying air planes can be dangerous.

11.3.7 –global syntactic ambiguity

A syntactic ambiguity is called -global if it is a property of only part of the sentence.

Example:The horse raced by the barn fell.

11.3.8 Role of the�global distinction

In LA-grammar, the difference between +global and –global ambiguities consists in whether more than one
reading survives to the end of the sentence (example 11.3.6) or not (example 11.3.7). The�global distinction
has no impact on complexity in LA-grammar and is made mainly for linguistic reasons.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 180

11.3.9 +recursive syntactic ambiguity

An ambiguity is +recursive, if it originates within a recursive loop of rule applications.

Examples: the C-LAGs forWWR (cf. 11.5.6) and WW (cf. 11.5.8), which are –global, and forSubsetSum (cf.
11.5.10), which are +global.

11.3.10 -recursive syntactic ambiguity

An ambiguity is –recursive, if none of the branches produced in the ambiguity split returns to the state which
caused the ambiguity.

Examples: the C-LAG forakbkcmdm [akbmcmdk (cf. 11.5.3), which is +global, and the C-LAGs for natural
language in Chapter 17 and 18, which exhibit both +global and –global ambiguities.

11.3.11 Role of the�recursive distinction

The�recursive distinction is crucial for the analysis of complexity because it can be shown that in LA-
grammars with nonrecursive ambiguities the maximal number of rule applications per combination step is limited
by a grammar-dependent constant.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 181

11.3.12 Theorem 3

The maximal number of rule applications in LA-grammar with only –recursive ambiguities is

(n� (R� 2)) � 2(R�2)

for n > (R - 2), wheren is the length of the input andR is the number of rules in the grammar.

Proof: Parsing an input of lengthn requires(n – 1) combination steps. If an LA-grammar hasR rules, then one
of these rules has to be reapplied afterR combination steps at the latest. Furthermore, the maximal number of
rule applications in a combination step for a given reading isR.

According to the definition of –recursive ambiguity, rules causing a syntactic ambiguity may not be reapplied in
a time-linear derivation path (reading). The first ambiguity-causing rule may produce a maximum of R-1 new
branches (assuming its rule package contains all R rules except for itself), the second ambiguity causing rule
may produce a maximum of R – 2 new branches, etc. If the different rules of the LA-grammar are defined with
their maximally possible rule packages, then after R – 2 combination steps a maximum of 2(R�2) readings is
reached.

Q.E.D.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 182

11.4 Complexity of grammars and automata

11.4.1 Choosing the primitive operation

The Griffith and Petrick data is not in terms of actual time, but in terms of “primitive operations.” They
have expressed their algorithms as sets of nondeterministic rewriting rules for a Turing-machine-like
device. Each application of one of these is a primitive operation. We have chosen as our primitive
operation the act of adding a state to a state set (or attempting to add one which is already there). We
feel that this is comparable to their primitive operation because both are in some sense the most complex
operation performed by the algorithm whose complexity is independent of the size of the grammar and
the input string.

J. Earley 1970, p. 100

11.4.2 Primitive operation of the C-LAGs

The primitive operation of C-LAGs is a rule application (also counting unsuccessful attempts).

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 183

11.5 Subhierarchy of C1-, C2-, and C3-LAGs

11.5.1 The subclass of C1-LAGs

A C-LAG is a C1-LAG if it is not recursively ambiguous. The class of C1-languages parses in linear
time and contains all deterministic context-free languages which can be recognized by a DPDA without

"-moves, plus context-free languages with –recursive ambiguities, e.g.akbkcmdm [akbmcmdk, as

well as many context-sensitive languages, e.g.akbkck, akbkckdkek, {akbkck} �, Lsquare, Lkhast, a2
i

,
akbmck�m, andai!, whereby the last one is not even an index language.

11.5.2 C1-LAG for context-sensitivea2
i

LX =def {[a (a)]}
STS =def {[(a) { r1}]}
r1: (a) (a)) (aa) {r2}
r2: (aX) (a)) (Xbb) {r2, r3}
r3: (bX) (a)) (Xaa) {r2, r3}
STF =def {[(aa) rp1], [(bXb) rp2], [(aXa) rp3]}.

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 184

11.5.3 C1-LAG for ambiguousakbkcmdm [akbmcmdk

LX =def {[a (a)], [b (b)], [c (c)], [d (d)]}
STS =def {[(a) { r1, r2, r5}]}
r1: (X) (a)) (a X) {r1, r2, r5}
r2: (a X) (b)) (X) { r2, r3}
r3: (X) (c)) (c X) { r3, r4}
r4: (c X) (d)) (X) { r4}
r5: (X) (b)) (b X) { r5, r6}
r6: (b X) (c)) (X) { r6, r7}
r7: (a X) (d)) (X) { r7}
STF =def {[" rp4], [" rp7]}

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 185

11.5.4 The Single Return Principle (SRP)

A +recursive ambiguity is single return, if exactly one of the parallel paths returns into the state resulting
in the ambiguity in question.

11.5.5 The subclass of C2-LAGs

A C-LAG is a C2-LAG if it is SR-recursively ambiguous. The class of C2-languages parses in polynomial
time and contains certain nondeterministic context-free languages likeWWR andL1hast, plus context-
sensitive languages likeWW, Wk�3, {WWW}�, andW1W2WR

1 WR
2 .

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 186

11.5.6 C2-LAG for context-freeWWR

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }
STS =def {[(segc) { r1, r2}]}, where segc � {a, b, c, d,: : : }
r1: (X) (segc)) (segc X) { r1, r2}
r2: (segc X) (segc)) (X) { r2}
STF =def {[" rp2]}

11.5.7 Derivation structure of the worst case inWWR

2
2 2

2 2 2
2 2

2

1
1 1
1 1 1
1 1 1 1
1 1 1 1 1

analyses:

a
a a
a a

rules:

a

$

a a a a
a a a a

a a a a a a

a
aa a

a
aa

a
a

a
$

$
$

$
$

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 187

11.5.8 C2-LAG for context-sensitiveWW

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }
STS =def {[(segc) { r1, r2}]}, where segc � {a, b, c, d,: : : }
r1: (X) (segc)) (X segc) { r1, r2}
r2: (segc X) (segc)) (X) { r2}
STF =def {[" rp2]}

11.5.9 C2-LAG for context-sensitiveW1W2WR
1 WR
2

LX =def {[a (a)], [b (b)]}
STS =def {[(segc) { r1a}], [(segc) { r1b}]}, where segc, segd � {a, b}
r1a: (segc) (segd)) (# segc segd) { r2, r3}
r1b: (segc) (segd)) (segd # segc) { r3, r4}
r2: (X) (segc)) (X segc) { r2, r3}
r3: (X) (segc)) (segc X) { r3, r4}
r4: (X segc) (segc)) (X) { r4, r5}
r5: (segc X #) (segc)) (X) { r6}
r6: (segc X) (segc)) (X) { r6}
STF =def {[" rp5], [" rp6]}

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 188

11.5.10 C3-LAG forSubsetSum.

LX =def {[0 (0)], [1 (1)], [# (#)]}
STS =def {[(segc) { r1, r2}]}, where segc � {0, 1}

segc " {0, 1}
r1: (X) (segc)) (segc X) { r1, r2}
r2: (X) (#)) (# X) { r3, r4, r6, r7, r12, r14}
r3: (X segc) (segc)) (0 X) { r3, r4, r6, r7}
r4: (X #) (#)) (# X) { r3, r4, r6, r7, r12, r14}
r5: (X segc) (segc)) (0 X) { r5, r6, r7, r11}
r6: (X 1) (0)) (1 X) { r5, r6, r7, r11}
r7: (X 0) (1)) (1 X) { r8, r9, r10}
r8: (X segc) (segc)) (1 X) { r8, r9, r10}
r9: (X 1) (0)) (0 X) { r5, r6, r7, r11}
r10: (X 0) (1)) (0 X) { r8, r9, r10}
r11: (X #) (#)) (# X) { r3, r4, r6, r7, r12, r14}
r12: (X 0) (segc)) (0 X) { r4, r12, r14}
r13: (X 0) (segc)) (0 X) { r11, r13, r14}
r14: (X 1) (segc)) (1 X) { r11, r13 r14}
STF =def {[(X) rp 4]}

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 189

11.5.11 Types of restriction in LA-grammar

0. LA-type A: no restriction

1. LA-type B: The length of the categories of intermediate expressions is limited byk � n, wherek is a constant
andn is the length of the input (R1:1, amount).

2. LA-type C3: The form of the category patterns results in a constant limit on the operations required by the
categorial operations (R1:2, amount).

3. LA-type C2: LA-type C3 and the grammar is at most SR-recursively ambiguous (R2, number).

4. LA-type C1: LA-type C3 and the grammar is at most –recursively ambiguous (R2, number).

c1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 190

11.5.12 LA-grammar hierarchy of formal languages

linear

polynomial

exponential

exponential

exponential

restrictions types of LAG languages

LA-type C1

complexity

LA-type C2

A languages

LA-type C3

LA-type B

LA-type A

C1-LAGs

C2-LAGs

C3-LAGs

B-LAGs

A-LAGs

C1 languages

C2 languages

C3 languages

B languages

c1999 Roland Hausser

