FoCL, Chapter 11: Hierarchy of LA-grammar 170

11. Hierarchy of LA-grammar

11.1 Generative capacity of unrestricted LAG

11.1.1 Generative capacity of unrestricted LA-grammar

Unrestricted LA-grammar accepts and generates all and only the recursive languages.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 171
11.1.2 Theorem 1

Unrestricted LA-grammar accepts and generatdgthe recursive languages.

Proof: Assume an input string of finite length Each word in the input string has a finite number of readings
(> 0).

Combination step 1: The finite set of start stateg &ifid all readings of the first word;wesult in a finite set of
well-formed expressions WE= {(ss’ rps) | ss’e (W' x CM)}.

Combination step n: Combination step k-1>k1, has produced a finite set of well-formed expressions, WE
{(ss’rp;) | i e n, ss’e (W x C*) and the surface of each ss’ has length k}. The next wordvhas a finite
number of readings.

Therefore, the Cartesian product of all elements of,VeEd all readings of the current next word will be a finite
set of pairs. Each pair is associated with a rule package containing a finite set of rules. Therefore, combin:
step k will produce only finitely many new sentence starts. The derivation of this finite set of new sentence s
Is decidable because the categorial operations are defined to be total recursive functions.

Q.E.D.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 172
11.1.3 Theorem 2

Unrestricted LA-grammar accepts and generatlesecursive languages.

Proof. Let L be a recursive language with the alphabet W. Because L is recursive, there is a total recur
functiono: W* — {0,1}, i.e., the characteristic function of L. Let LAGbe an LA-grammar defined as follows:

The set of word surfaces of LAGs W.
The set of category segments G.#W U {0,1}.

For arbitrarye, f e W, [e ()] e LX ifand only if e = f.

LX=4er {[a(@)], [b(b)], [c(c)], [d(d)],...}

STs =aer {[(s€9c) {11, r2}]}, where seg. e {a, b, c,d,. . . }
ri: (X) (seg.) = (Xseq) {r.r}

rz: (X) (seq) = o(Xseg) {}

STr =qey {[(1) rp2]}

After any given combination step, the rule packageafbers two choices: application of to continue reading
the input string, or application of to test whether the input read so far is a well-formed expression of L. In th

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 173

latter case, the functiop is applied to the concatenation of the input categories, which are identical to the inp
surfaces. If the result of applying is [(1) rp;], the input surface is accepted; if it is [(0)Apit is rejected.

Since the categorial operations of LA@an be any total recursive function, LAGnay be based op, the
characteristic function of L. Therefore, LAGaccepts and generates any recursive language.

Q.E.D.

11.1.4 Definition of the class of A-LAGS.

The class of A-LAGs consists of unrestricted LA-grammars and genathtesursive languages.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 174

11.2 LA-hierarchy of A-, B-, and C-LAGs

11.2.1 Parameters of complexity

e Theamountof computation per rule application required in the worst case.
e Thenumberof rule applications relative to the length of the input needed in the worst case.

11.2.2 Main approaches to restricting LA-grammar

R1: Restrictions on the form of categorial operations in order to limit the maximal amount of computation
required by arbitrary rule applications.

R2: Restrictions on the degree of ambiguity in order to limit the maximal number of possible rule appli-
cations.

11.2.3 Possible restrictions on categorial operations

R1.1: Specifying upper bounds for thengthof categories;
R1.2: Specifying restrictions opatternsused in the definition of categorial operations.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 175
11.2.4 Definition of the class of B-LAGs.

The class oboundedLA-grammars, or B-LAGSs, consists of grammars where for any complete well-
formed expression E the length of intermediate sentence start categories is boukdeal, byheren is
the length of E and is a constant.
11.2.5 Rule schemata with constant categorial operations
ri. (seg...seg X) cat, = cag rp;
r;: (X seq...seg) cab = cat rp;
r;: (seq...seg, X seg,1...Seq) cat = cag rp;
11.2.6 Rule schema with nonconstant categorial operation
ri. (X seq...seg Y) cat, = cat rp;

11.2.7 Definition of the class of C-LAGS.

The class otonstant_A-grammars, or C-LAGS, consists of grammars in which no categorial operation
co; looks at more thak segments in the sentence start categories, for a finite cokstant

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 176
11.2.8 The hierarchy of A-LAGs, B-LAGSs, and C-LAGs

The class of A-LAGs accepts and generates all recursive languages, the class of B-LAGs accepts ar
generates all context-sensitive languages, and the class of C-LAGs accepts and generates many conte
sensitive, all context-free, and all regular languages.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 177

11.3 Ambiguity in LA-grammar

11.3.1 Factors determining the number of rule applications

The number of rule application in an LA-derivation depends on

1. the length of the input;
2. the number of rules in the rule package to be applied in a certain combination to the analyzed input pair
3. the number of readings existing at each combination step.

11.3.2 Impact on complexity

e Factor 1 is grammar-independent and used as the lengtformulas characterizing complexity .
e Factor 2 is a grammar-dependent constant.

e Only factor 3 may push the total number of rule applications beyond a linear increase. Whether for a gi
input more than one rule in a rule package may be successful depends on the input conditions of the rul

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 178
11.3.3 Regarding factor 3: Possible relations between the input conditions of two rules

1. Incompatiblenput conditions: if there exist no input pairs which are accepted by both rules.

Examples: (a X) (b) (a X) (b)
(c X) (b) (@ X) (c)

2. Compatiblenput conditions: if there exists at least one input pair accepted by both rules and there exist
least one input pair accepted by one rule, but not the other.

Examples: (a X) (b)
(X'a) (b)

3. Identicalinput conditions: if all input pairs are either accepted by both rules or rejected by both rules.

11.3.4 Definition of unambiguous LA-grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules have
incompatiblenput conditions and (ii) there are no lexical ambiguities.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 179
11.3.5 Definition of syntactically ambiguous LA-grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package containing
at least two rules witlkcompatibleinput conditions and (ii) there are no lexical ambiguities.

11.3.6 +global syntactic ambiguity

A syntactic ambiguity is called +global if it is a property of the whole sentence.
Example:Flying air planes can be dangerous.

11.3.7 —global syntactic ambiguity

A syntactic ambiguity is called -global if it is a property of only part of the sentence.
Example:The horse raced by the barn fell.

11.3.8 Role of thetglobal distinction

In LA-grammar, the difference between +global and —global ambiguities consists in whether more than
reading survives to the end of the sentence (example 11.3.6) or not (example 11.3.4)glbbal distinction
has no impact on complexity in LA-grammar and is made mainly for linguistic reasons.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 180
11.3.9 +recursive syntactic ambiguity

An ambiguity is +recursive, if it originates within a recursive loop of rule applications.

Examples: the C-LAGs fowW! (cf. 11.5.6) and WW (cf. 11.5.8), which are —global, andSobsetSum (cf.
11.5.10), which are +global.

11.3.10 -recursive syntactic ambiguity

An ambiguity is —recursive, if none of the branches produced in the ambiguity split returns to the state wt
caused the ambiguity.

Examples: the C-LAG foa*b*c™d™ U a*b™c™d* (cf. 11.5.3), which is +global, and the C-LAGs for natural
language in Chapter 17 and 18, which exhibit both +global and —global ambiguities.

11.3.11 Role of thetrecursive distinction

The +recursive distinction is crucial for the analysis of complexity because it can be shown that in LA
grammars with nonrecursive ambiguities the maximal number of rule applications per combination stepis lim
by a grammar-dependent constant.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 181
11.3.12 Theorem 3

The maximal number of rule applications in LA-grammar with only —recursive ambiguities is
(n— (R —2))- 20+

forn > (R - 2), wheren is the length of the input anfd is the number of rules in the grammar.

Proof: Parsing an input of length requiregn — 1) combination steps. If an LA-grammar hi@sules, then one
of these rules has to be reapplied afeecombination steps at the latest. Furthermore, the maximal number ¢
rule applications in a combination step for a given readirfg.is

According to the definition of —recursive ambiguity, rules causing a syntactic ambiguity may not be reapplie
a time-linear derivation path (reading). The first ambiguity-causing rule may produce a maximum of R-1 n
branches (assuming its rule package contains all R rules except for itself), the second ambiguity causing
may produce a maximum of R — 2 new branches, etc. If the different rules of the LA-grammar are defined v
their maximally possible rule packages, then after R — 2 combination steps a maximuiT 6f 2adings is
reached.

Q.E.D.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 182
11.4 Complexity of grammars and automata

11.4.1 Choosing the primitive operation

The Griffith and Petrick data is not in terms of actual time, but in terms of “primitive operations.” They
have expressed their algorithms as sets of nondeterministic rewriting rules for a Turing-machine-like
device. Each application of one of these is a primitive operation. We have chosen as our primitive
operation the act of adding a state to a state set (or attempting to add one which is already there). W
feel that this is comparable to their primitive operation because both are in some sense the most comple
operation performed by the algorithm whose complexity is independent of the size of the grammar anc
the input string.

J. Earley 1970, p. 100

11.4.2 Primitive operation of the C-LAGs

The primitive operation of C-LAGs is a rule application (also counting unsuccessful attempts).

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar

11.5 Subhierarchy of C1-, C2-, and C3-LAGS

183

11.5.1 The subclass of C1-LAGs

A C-LAG is a C1-LAG if it is not recursively ambiguous. The class of Cl-languages parses in linear
time and contains all deterministic context-free languages which can be recognized by a DPDA without
e-moves, plus context-free languages with —recursive ambiguities, a&lgfic™d™ U a“b™c™d", as

well as many context-sensitive languages, ealfjb*ct, a*b*c*d*e*, {a*b*c"}*, Lyquare, LS. .,, @2,
akb™ck™ anda®, whereby the last one is not even an index language.

11.5.2 C1-LAG for context-sensitivea®

LX =g4er {[a (@)1}
STs =gey {[(@) { r1}1}

r: (@ (@ = (aa) {r2}
r2: (axX) (a) = (Xbb) {ra, r3}
r3: (bX) (a) = (Xaa) {ro, r3}

STr =des {[(@a) rp1], [(bXb) rp:], [(aXa) rps]}.

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 184

11.5.3 C1-LAG for ambiguousa®b®c™d™ U a*b™c™d*

LX =4es {[a (a)], [b (b)], [c (c)], [d (d)]}
STs =des {[(@) {r1, r2, r5}]}

r:(X) (@ = @X) {ry,r,rs}

rz: (@X) (b) = (X) {rg,r3}

r3: (X) () = (c X) {rs,ra}

rg: (€ X) (d) = (X) {r4}

r5: (X) (b)) = (bX) {rs5, re}

rs: (b X) (¢) = (X) {re 7}
r2(@x) () =X) {r}

STr =aes {[€ rpal, [€ rprl}

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 185
11.5.4 The Single Return Principle (SRP)

A +recursive ambiguity is single return, if exactly one of the parallel paths returns into the state resulting
in the ambiguity in question.

11.5.5 The subclass of C2-LAGSs

A C-LAGisa C2-LAGI fitis SR-recursively ambiguous. The class of C2-languages parses in polynomial
time and contains certain nondeterministic context-free languageSvike' andL° ., plus context-
sensitive languages liIR&/W, W53 IWWWY}*, andW; W, WEWEY,

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 186
11.5.6 C2-LAG for context-freeWw"?

LX =4er {[a(a)], [b(b)], [c(c)],[d(d)]...}

STs =ger {[(s€q.) {r1, r2}]}, where seg. e {a, b, c, d,. ..}
ri: (X) (seg) = (seg X) {r1, r2}

r2: (seg. X) (seg.) = (X){ra}

STr =dey {[€ rpal}

11.5.7 Derivation structure of the worst case invVwW=®

rules: analyses:

2 a$ a

12 2 aa$$ aa
11222 aaa$aaa
11122 aaaa$gaa
11112 aaaaa$la
11111 aaaaaat

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 187
11.5.8 C2-LAG for context-sensitive\VW

LX =4er {[a(a)], [b(b)], [c(c)], [d(d)]...}

STs =4er {[(s€9c) {11, r2}]}, Wwhere seg. e {a, b, c,d,. . . }
ri: (X) (seq) = (Xsegq.){ri ra}

rp: (seg X) (seg) = (X) {r}

STr =qey {[€ rp2l}

11.5.9 C2-LAG for context-sensitiveV; Wy W Wi

LX =4y {[a(a)], [b (b)]}

STs =qer {[(s€Qc) {r1a}], [(s€9c) {r1:}]}, Where seg., seg; € {a, b}
ra: (seg) (seq) = (#segsegq) {r2,rs}

rp: (seg) (seq) = (seq #seq) {r3, rs}

ra: (X) (seg) = (Xsegq) {rz, r3}
r3: (X) (seg) = (seg X) {r3,ra}
ry: (Xseg) (seg) = (X) {ra, 15}
rs: (seg X #) (seg) = (X) {re}
re: (seg X) (seq) = (X) {re}

STr =dey {[€ 1Ps], [€ rpel}

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar

188

11.5.10 C3-LAG for SubsetSum.

LX =4er {[0(0)], [1 (1)], [# A)]}
STs =des {[(s€9c) {r1. r2}1}, where seg. € {0, 1}
seg ¢ {0, 1}
ri: (X) (seg) = (seg X){ri, ro}
ra: (X) (#) = (#X) {rs,r4 16,17, 112, 114}
r3: (Xseg) (seg) = (0X) {rs, rq, 16,17}
rg: (X#) (#) = (#X) {rs,r4, 16 17, 112, 14}
r5: (Xseg) (seg) = (0X) {rs r6 r7, 111}
re: (X1) (0) = (LX) {rs.r6. 17,111}
r7: (X 0) (1) = (LX) {rs,r9, 110}
rg: (Xseg) (seg) = (LX) {rs,ro, rio}
re: (X'1) (0) = (0X) {rs. 16,77, 111}
ro: (X0) (1) = (0X) {rs,r9, 110}
i (X#) (#) = (#X) {rs,r4, 16, 17, 112, 14}
rig: (X0) (seg) = (0X) {rg ri2, ria}
ri3: (X0) (seg) = (0X) {ri1,r3,ri4}
ra: (X1) (seg) = (1X) {ri1,rzria}
STr =gey {[(X) rp 4]}

e ¥ =

(©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar 189
11.5.11 Types of restriction in LA-grammar

0. LA-type A: no restriction

1. LA-type B: The length of the categories of intermediate expressions is limitekd hywherek is a constant
andn is the length of the inputiR1.1, amount).

2. LA-type C3: The form of the category patterns results in a constant limit on the operations required by
categorial operationg{1.2, amount).

3. LA-type C2: LA-type C3 and the grammar is at most SR-recursively ambigu®2srumber).
4. LA-type C1: LA-type C3 and the grammar is at most —recursively ambigug@@sriumber).

CF LAE (©1999 Roland Hausser

FoCL, Chapter 11: Hierarchy of LA-grammar

190

11.5.12 LA-grammar hierarchy of formal languages

restrictions

types of LAG languages complexity
LA-type C1 C1l-LAGs C1 languages linear
LA-type C2 C2-LAGs C2 languages polynomial
LA-type C3 C3-LAGs C3 languages exponential
LA-type B B-LAGs B languages exponential
LA-type A A-LAGs A languages exponential

e ¥ =

(©1999 Roland Hausser

